

SM9 identity-based cryptographic algorithms

Part 4: Key encapsulation mechanism and public key

encryption algorithm

 i

Contents

1 Scope .. 1

2 Normative references .. 1

3 Terms and definitions .. 1

3.1 secret key .. 1

3.2 message ... 1

3.3 plaintext .. 1

3.4 ciphertext ... 1

3.5 encryption .. 2

3.6 decryption .. 2

3.7 key derivation function ... 2

3.8 message authentication code (MAC)... 2

3.9 encryption master key ... 2

3.10 identity .. 2

3.11 key generation center (KGC) ... 2

4 Symbols ... 2

5 Algorithm parameters and auxiliary functions .. 4

5.1 Overview ... 4

5.2 System parameters ... 4

5.3 Generation of the encryption master key and the user’s encryption private key 4

5.4 Auxiliary functions .. 5

5.4.1 Overview ... 5

5.4.2 Cryptographic hash functions ... 5

5.4.3 Key derivation functions ... 6

5.4.4 Block cipher algorithms .. 6

5.4.5 Message authentication code functions .. 6

5.4.6 Random number generators ... 7

6 Key encapsulation mechanism and its process .. 7

6.1 Key encapsulation algorithm and its process ... 7

6.1.1 Key encapsulation algorithm .. 7

6.1.2 Key encapsulation process ... 7

6.2 Key decapsulation algorithm and its process ... 8

6.2.1 Decapsulation algorithm .. 8

6.2.2 Key decapsulation process ... 8

7 Public key encryption algorithm and its process... 9

7.1 Encryption algorithm and its process .. 9

7.1.1 Encryption algorithm ... 9

7.1.2 Encryption process .. 10

7.2 Decryption algorithm and its process ... 12

7.2.1 Decryption algorithm .. 12

7.2.2 Decryption process .. 12

 1

SM9 identity-based cryptographic algorithms

Part 4444: Key encapsulation mechanism and public key

encryption algorithm

1 Scope

This part specifies an identity-based key encapsulation mechanism and a public key encryption and

decryption algorithm built upon pairings on elliptic curves and specifies the corresponding processes.

The key encapsulation mechanism can be used to encapsulate a secret key to a specific entity. The

public key encryption and decryption algorithms are identity-based asymmetric cryptographic

algorithms, which allow the sender to encrypt the message using the identity of a receiver, and only the

receiver can decrypt the encrypted message using its corresponding private key.

This part applies to the key encapsulation and the encryption and decryption of a message.

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content

constitutes requirements of this document. For dated references, only the edition cited applies. For

undated references, the latest edition of the referenced document (including any amendments) applies.

GM/T 0004‒2012, SM3 cryptographic hash algorithm

GM/T 0002‒2012, SM4 block cipher algorithm

GM/T 0044.1‒2016, SM9 identity-based cryptographic algorithms — Part 1: General

GM/T 0044.3‒2016, SM9 identity-based cryptographic algorithms — Part 3: Key exchange protocol

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1 secret key

key shared by both the sender and the receiver in a cryptographic system, unknown to any third party

3.2 message

bit string of finite length

3.3 plaintext

unencrypted information

3.4 ciphertext

data which has been transformed to hide its information content

 2

3.5 encryption

(invertible) transformation of data by a cryptographic algorithm to generate ciphertext, i.e. to hide the

information content of the data

3.6 decryption

the inverse process of the corresponding encryption

3.7 key derivation function

function that generates one or more shared private keys from shared secrets and other parameters

known to both entities

3.8 message authentication code (MAC)

authentication algorithm which is used to identify the source and check the integrity of the data by

generating a section of code from a specific key and the message, where the function used to obtain the

message authentication code is called the message authentication code function

3.9 encryption master key

topmost key in the key hierarchy of an identity–based cryptographic system, composed of the

encryption master private key and the encryption master public key. The encryption master public key

is publicly available while the encryption master private key is kept secret by the KGC. The KGC

generates the user’s encryption private key by using the encryption master private key and the user’s

identity. In an identity–based cryptographic system, the encryption master private key is usually

generated by the KGC using random number generator while the encryption master public key is

generated with the encryption master private key and the system parameters

3.10 identity

information that can be used to confirm the identity of an entity, composed of non-repudiable

information about the entity, such as its distinguished name, email address, identity card number, and

telephone number.

3.11 key generation center (KGC)

trusted authority responsible for the selection of system parameters, generation of the encryption

master keys, and generation of users’ encryption private keys (in this part)

4 Symbols

The following symbols apply to this part.

A, B: two users A and B using the identity-based cryptographic system

��: the cofactor of the order of an elliptic curve relative to �

���: curve identifier that indicates the type of elliptic curve, denoted by one byte, where 0x10

represents an ordinary curve (the non-supersingular curve) over �� (the prime number � > 2���), 0x11

represents a supersingular curve over �� , and 0x12 represents an ordinary curve and its twisted curve

over ��

 3

��(): block cipher decryption algorithm

���: encryption private key of the user B

���(): block cipher encryption algorithm

�: a bilinear pairing from �� × �� to ��

���: bilinear pairing identifier to distinguish the type of the bilinear pairing �, denoted by one byte,

where 0x01 represents the Tate pairing, 0x02 represents the Weil pairing, 0x03 represents the Ate

pairing, and 0x04	represents	the R-Ate pairing

��: a multiplicative cyclic group of prime order �

��: an additive cyclic group of prime order	�

��: an additive cyclic group of prime order �

� : � to the power of !, where � is an element in the multiplicative group �� and ! is a positive integer,

that is � = � ⋅ � ⋅ ⋯ ⋅ �%&&'&&(
)*+

,-(): a cryptographic hash function

,�(), ,�(): cryptographic functions derived from the cryptographic hash function

ℎ��: identifier of the encryption private key generating function, denoted by one byte, selected and

made public by the KGC

/�: the identity of user B that uniquely determines the public key of B

0�():the key derivation function

1: the message to be encrypted

1′: the message obtained by decryption

134(): the message authentication code function

�: the order of the cyclic groups ��, �� and �� , which is a prime number greater than 2���

5� 678: the encryption master public key

5�: a generator of ��

5�: a generator of ��

9�: the encryption master private key

〈5〉: the cyclic group generated by the element 5

[!]5 : the ! multiple of the element 5 in the additive groups �� or ��

>||@: the concatenation of > and @, where > and @ are bit strings or byte strings

 4

[>, @]: the set of integers which are not less than > and not greater than @

⨁: the bitwise XOR operator that operates on two bit strings of the same length

C: the twisted curve parameter

5 Algorithm parameters and auxiliary functions

5.1 Overview

The key is a crucial parameter in the control of cryptographic transformations in modern cryptography,

and the security of cryptographic output greatly depends on the security of the key. The key

encapsulation mechanism enables a user to generate and encrypt a secret key to a target user, such as

only the target user can decrypt the secret key, which can be used further as a basis for session keys.

This part specifies an identity-based key encapsulation mechanism realized with elliptic curve pairings.

The decapsulating user holds an identity and the corresponding private key, which is generated by the

KGC using the master private key and the user's identity. The encapsulating user generates a secret key

and uses the decapsulating user's identity to encrypt the secret key to the decapsulating user, and the

decapsulating user obtains the secret key by the decapsulation process with the private key.

This part also describes an identity-based public key encryption algorithm built upon pairings on

elliptic curves. The public key encryption algorithm is constructed from the combination of the key

encapsulation mechanism described above together with a data encapsulation mechanism to provide

data confidentiality. There are two types of data encapsulation mechanisms: stream ciphers based on a

key derivation function, and block ciphers combined with a key derivation function. For the identity-

based encryption algorithm, the decrypting entity holds an identity and the corresponding private key,

which is generated by the KGC using the master private key and the identity of decrypting entity. The

encrypting entity encrypts data with the decrypting entity's identity, and the decrypting entity decrypts

the data with its private key.

5.2 System parameters

The system parameters include: the curve identifier ���, the parameters of the elliptic curve base field

�D , the parameters of the elliptic curve equation E and F, the twisted curve parameter C (if the least

significant 4 bits of ���	is 2), the prime factor � of the order of the curve and the cofactor �� relative to

�, the embedding degree 9	of the curve �(�D) relative to �, a generator 5� of the cyclic subgroup �� of

�(�DGH) of order � (where ��divides 9), a generator 5� of the cyclic subgroup of �(�DGI) of order �

(where �� divides 9), the bilinear pairing identifier ��� of �, and optionally the homomorphism J from

�� to ��.

The range of the bilinear pairing � is the multiplicative cyclic group �� of order �.

For detailed descriptions of the system parameters as well as their verification, please refer to Clause 7

of GM/T 0044.1‒2016.

5.3 Generation of the encryption master key and the user’s encryption private key

The KGC generates a random number 9� ∈ [1, � − 1] as the encryption master private key, computes

the element 5� 678 = [9�]5� in �� as the encryption master public key, and then the encryption master

key pair is N9�, 5� 678O. The KGC keeps 9� secret and makes 5� 678 public.

 5

The KGC selects a one-byte encryption private key generating function identified by the identifier ℎ��,

and makes it public.

Let /� denote the identity of user B. To generate the encryption private key ��� of B, the KGC first

computes P� = ,�(/�||ℎ��, �) + 9� over the finite field �R. If P� = 0, it regenerates the encryption

master private key, computes the encryption master public key and makes it public, and updates the

existing encryption private keys of users. Otherwise, it computes P� = 9� ∙ P�7�, and then computes

�8� = [P�]5�.

5.4 Auxiliary functions

5.4.1 Overview

Five types of auxiliary functions are used in the identity-based key encapsulation mechanism and the

public key encryption algorithm specified in this part: cryptographic hash functions, key derivation

functions, message authentication code functions, random number generators and block cipher

algorithms. The security of the key encapsulation mechanism and the public key encryption algorithm is

directly impacted by these auxiliary functions.

5.4.2 Cryptographic hash functions

5.4.2.1 Cryptographic hash function UV()

The output of the cryptographic hash function ,-() is a W-bit hash value. This part adopts the

cryptographic hash functions approved by the State Cryptography Administration such as the SM3

cryptographic hash algorithm.

5.4.2.2 Cryptographic function U[()

The input of the cryptographic function ,�(\, �) is a bit string \ and an integer	�, and its output is an

integer ℎ� ∈ [1, � − 1] . ,�(\, �) invokes the cryptographic hash function ,-()	 internally. ,-() is

specified in 5.4.2.1.

Cryptographic function	U[(], ^):

Input: a bit string	\ and an integer	�.

Output: an integer ℎ� ∈ [1, � − 1].

Step 1: Initialize a 32-bit counter	�P = 0x00000001;

Step 2: Compute	ℎ`�� = 8 × b(5 × (log� �))/32h;

Step 3: For 	� = 1	 to bℎ`��/Wh:

Step 3.1: Compute	,Ei = ,-(0x01||\||�P);

Step 3.2: �P++;

Step 4: If ℎ`��/W is an integer, set ,E!bkl8m/-h = ,Ebkl8m/-h. Otherwise, set 	,E!bkl8m/-h to be the leftmost

	(ℎ`�� − (W × nℎ`��/Wo)) bits of 	,Ebkl8m/-h.

Step 5: Set		,E = ,E�||,E�||⋯ ||	,Ebkl8m/-h7�	||,E!bkl8m/-h. Convert the data type of ,E to integer as

specified in Clauses 6.2.4 and 6.2.3 of GM/T 0044.1‒2016.

 6

Step 6: Compute 	ℎ� = (,E	mod	(� − 1)) + 1.

5.4.2.3 Cryptographic function Ur()

The input of the cryptographic function ,�(\, �) is a bit string \ and an integer �, and its output is an

integer ℎ� ∈ [1, � − 1] . ,�(\, �) invokes the cryptographic hash function ,-() internally. ,-() is

specified in 5.4.2.1.

Cryptographic function Ur(], ^):

Input: a bit string \, an integer �.

Output: an integer ℎ� ∈ [1, � − 1].

Step 1: Initialize a 32-bit counter 	�P = 0x00000001;

Step 2: Compute	ℎ`�� = 8 × b(5 × (log� �))/32h;

Step 3: For � = 1 to bℎ`��/Wh:

Step 3.1: Compute ,Ei = ,-(0x02||\||�P);

Step 3.2: �P++;

Step 4: If ℎ`��/W is an integer, set ,E!bkl8m/-h = ,Ebkl8m/-h. Otherwise, set 	,E!bkl8m/-h to be the leftmost

	(ℎ`�� − (W × nℎ`��/Wo)) bits of 	,Ebkl8m/-h.

Step 5: Set ,E = ,E�||,E�||⋯ || ,Ebkl8m/-h7� ||,E!bkl8m/-h . Convert the data type of ,E to integer as

specified in Clauses 6.2.4 and 6.2.3 of GM/T 0044.1‒2016.

Step 6: Compute 	ℎ� = (,E	mod	(� − 1)) + 1.

5.4.3 Key derivation functions

The key derivation functions adopted in this part are specified in Clause 5.4.3 of GM/T 0044.3‒2016.

5.4.4 Block cipher algorithms

A block cipher algorithm is comprised of an encryption algorithm ���(0�,s) and a decryption

algorithm ��(0�, �). ���(0�,s) uses the secret key 0� to encrypt the plaintext s and outputs the

ciphertext �. ��(0�, �)	uses the secret key 0� to decrypt the ciphertext � and outputs the plaintext s or

reports an error. The bit length of 0� is denoted by 0�_`��	.

This part adopts the block cipher algorithms approved by the State Cryptography Administration, e.g.,

the SM4 block cipher algorithm.

5.4.5 Message authentication code functions

The aim of the message authentication code function 134(0�, \) is to protect the message \ from

unauthorized modifications. The message authentication code of message \ is generated under the

control of 0�. The bit length of	0� is denoted by 0�_`��. For the identity-based encryption algorithm in

this part, the message authentication code function uses the key generated by the key derivation

function to obtain the message authentication code of the ciphertext, allowing the decrypting entity to

identify the message source and verify integrity of the message.

 7

The message authentication code functions invoke the cryptographic hash functions.

Let ,-() be a cryptographic hash function and its output is a hash value of length W bits long.

Message authentication code function uvw(xr,]):

Input: a bit string 0� (a key of length 0�_`�� bits) and a bit string \ (the message to be processed to

obtain MAC).

Output: a bit string 0 of length W (the MAC of the message \).

Step 1: 0 = ,-(\||0�).

5.4.6 Random number generators

This part adopts the random number generators approved by the State Cryptography Administration.

6 Key encapsulation mechanism and its process

6.1 Key encapsulation algorithm and its process

6.1.1 Key encapsulation algorithm

In order to encapsulate a key of length 9`�� to user B, the encapsulating entity user A shall perform the

following steps.

A1: Compute y� = [,�(/�||ℎ��, �)]5� + 5� 678 ∈ ��.

A2: Generate a random integer z ∈ [1, � − 1].

A3: Compute 4 = [z]y� of ��, and convert the data type of 4 to bit string as specified in Clauses 6.2.8

and 6.2.5 of GM/T 0044.1‒2016.

A4: Compute � = �(5� 678 , 5�) of �� .

A5: Compute { = �| of �� , and convert the data type of { to bit string as specified in Clauses 6.2.6 and

6.2.5 of GM/T 0044.1‒2016.

A6: Compute 0 = 0�(4||{||/�, 9`��), if 0 = 0, go to A2.

A7: Output (0, 4), where 0 is the encapsulated key, 4 is the encapsulated ciphertext.

6.1.2 Key encapsulation process

The key encapsulation process is shown in Figure 1.

 8

Figure 1: Key encapsulation process

6.2 Key decapsulation algorithm and its process

6.2.1 Decapsulation algorithm

After user B receives the ciphertext 4, in order to decapsulate 0, B shall perform the following steps.

B1: Verify that 4 ∈ }� as specified in Clause 4.5 of GM/T 0044.1‒2016. If not, report an error and exit.

B2: Compute 	{’ = �(4, ���) of �� , and convert the data type of 	{’ to bit string as specified in Clauses

6.2.6 and 6.2.5 of GM/T 0044.1‒2016.

B3: Convert the data type of 	4 to bit string as specified in Clauses 6.2.6 and 6.2.5 of GM/T 0044.1‒2016,

and compute 0′ = 0�(4||{′||/�, 9`��). If 0′ = 0, report an error and exit.

B4: Output 0′.

6.2.2 Key decapsulation process

The key decapsulation process is shown in Figure 2.

NO

A’s initial data

(system parameters, encryption master public key 5� 678, identifier ℎ��, and identity /�)

Step 1: compute y� = [,�(/� ∥ ℎ��, �)]5� + 5� 678

Step 2: generate a random number z ∈ [1, � − 1]

Step 3: compute 4 = [z]y�

Step 4: compute � = �(5� 678 , 5�)

Step 5: compute { = �|

Step 6: compute 0 = 0�(4 ∥ { ∥ /�, 9`��)

Is 0 a zero string?

Step 7: output 0 and 4

YES

 9

Figure 2: Key decapsulation process

7 Public key encryption algorithm and its process

7.1 Encryption algorithm and its process

7.1.1 Encryption algorithm

Let 1 be the message to be sent, s`�� the bit length of 1. 0�_`�� is the bit length of the key 0� used

with the block cipher. 0�_`�� the bit length of the key 0� for 134(0�, \).

In order to encrypt a message 1 to user B, user A shall perform the following steps.

A1: Compute y� = [,�(/�||ℎ��, �)]5� + 5� 678 ∈ ��.

A2: Generate a random integer z ∈ [1, � − 1].

A3: Compute 4� = [z]y� of ��, and convert the data type of 4� to bit string as specified in Clauses 6.2.8

and 6.2.5 of GM/T 0044.1‒2016.

A4: Compute � = �(5� 678 , 5�) of �� .

A5: Compute { = �| of �� , and convert the data type of { to bit string as specified in Clauses 6.2.6 and

6.2.5 of GM/T 0044.1‒2016.

A6: Compute according to the type of encryption algorithm:

B’s initial data

(system parameters, ciphertext 4, identity /�, and encryption private key ���)

Step 1: check if 4 ∈ }�

4 ∈ }�?

Is 0 a zero string?

Step 2: compute {* = �(4, ���)

Step 3: compute 0* = 0�(4 ∥ {* ∥ /�, 9`��)

Step 3: output 0* Report error and exit

NO

YES

YES

NO

 10

a) Stream cipher based on the key derivation function

1) Compute 9`�� = s`�� + 0�_`��, 0 = 0�(4�||{||/�, 9`��). Let 0� be the leftmost s`�� bits of

0, and 0� be the remaining 0�_`�� bits. If 0� = 0, go to A2.

2) Compute 4� = 1⊕0�.

b) Block cipher combined with the key derivation function

1) Compute 9`�� = 0�_`�� + 0�_`��, 0 = 0�(4�||{||/�, 9`��). Let 0� be the leftmost 0�_`�� bits

of 0, and 0� be the remaining 0�_`�� bits. If 0� = 0, go to A2.

2) Compute 4� = ���(0�,1).

A7: Compute 4� = 134(0�, 4�).

A8: Output ciphertext 4 = 4�||4�||4�.

7.1.2 Encryption process

The encryption process is shown in Figure 3.

 11

Figure 3: Encryption process

a) 0�-based stream cipher b) 0�-combined block cipher

A’s initial data

(system parameters, encryption master public key 5� 678, identifier ℎ��, message 1 of

length s`��, and identity /�)

Step 1: compute y� = [,�(/� ∥ ℎ��, �)]5� + 5� 678

Step 2: generate a random number z ∈ [1, � − 1]

Step 3: compute 4� = [z]y�

Step 4: compute � = �(5� 678 , 5�)

Step 5: compute { = �|

Step 6: compute according to the method of encryption

Is 0 a zero string?

1) Compute 9`�� = s`�� + 0�_`�� ,

and then	0 = 0�(4�||{||/�, 9`��).

Let 0� be the left s`�� bits of 0 and 0�

be the remaining 0�_`�� bits.

1) Compute 9`�� = 0�_`�� + 0�_`�� ,

and then	0 = 0�(4�||{||/�, 9`��) .

Let 0� be the left 0�_`�� bits of 0 and

0� be the remaining 0�_`�� bits.

Is 0 a zero string?

2) Compute 4� = 1⊕0� 2) Compute 4� = ���(0�,1)

Step 7: compute 4� = 134(0�, 4�)

Step 8: output 4 = 4� ∥ 4� ∥ 4�

NO NO

YES YES

 12

7.2 Decryption algorithm and its process

7.2.1 Decryption algorithm

Let s`�� be the bit length of 4� of ciphertext 4 = 4�||4�||4�. 0�_`�� is the bit length of the key 0� used

with the block cipher. 0�_`�� is the bit length of the key 0� for 134(0�, \).

In order to decrypt 4, user B needs to perform the following steps.

B1: Extract bit string 4� from 4. Convert the data type of 	4� to a point on elliptic curve as specified in

Clauses 6.2.4 and 6.2.9 of GM/T 0044.1‒2016. Verify 4� ∈ �� as specified in Clause 4.5 of GM/T 0044.;1

‒2016; if not, report an error and exit.

B2: Compute 	{’ = �(4�, ���) of �� , and convert the data type of 	{’ to bit string as specified in Clauses

6.2.6 and 6.2.5 of GM/T 0044.1‒2016.

B3: Compute according to the type of encryption algorithm:

a) Stream cipher based on the key derivation function

1) Compute 9`�� = s`�� + 0�_`��, 0′ = 0�(4�||{′||/�, 9`��). Let 0�′ be the leftmost s`�� bits

of 0′, and 0�′ be the remaining 0�_`�� bits. If 0�′ = 0, report an error and exit;

2) Compute 1′ = 4�⊕0�′.
b) Block cipher combined with the key derivation function

1) Compute 9`�� = 0�_`�� + 0�_`��, 0′ = 0�(4�||{′||/�, 9`��). Let 0�′ be the leftmost 0�_`��

bits of 0′, and 0�′ be the remaining 0�_`�� bits. If 0�′ = 0, report an error and exit;

2) Compute 1′ = ��(0�′, 4�).

B4: Compute ! = 134(0�′, 4�). Extract bit string 4� from 4; if ! ≠ 4�, report an error and exit;

B5: Output plaintext 1′.

7.2.2 Decryption process

The decryption process is shown in Figure 4.

 13

Figure 4: Decryption process

a) 0�-based stream cipher b) 0�-combined block cipher

B’s initial data

(system parameters, ciphertext 4 = 4� ∥ 4� ∥ 4�, identity /�, and encryption

private key ���)

Step 3: compute according to the method of encryption

Is 0�′ a zero string?

1) Compute 9`�� = s`�� + 0�_`��, and

then 	0′ = 0�(4�||{′||/�, 9`��) . Let

0�′ be the left s`�� bits of 0′ and 0�′
be the remaining 0�_`�� bits.

1) Compute 9`�� = 0�_`�� + 0�_`��, and

then 	0′ = 0�(4�||{′||/�, 9`��) . Let

0�′ be the left 0�_`�� bits of 0′ and 0�′ be

the remaining 0�_`�� bits.

Is 0�′ a zero string?

2) Compute 1′ = 	4�⊕0�′ 2) Compute 1′ = ��(0�′, 4�)

Step 4: compute ! = 134(0�′, 4�)

NO NO

YES YES

Step 1: extract 4� from 4

4� ∈ }�?

Step 2: compute {* = �(4�, ���)

! = 4�?

Step 5: output 1′ Report error and exit Report error and exit

NO

YES

YES

NO

