
GM/T 0044.1

SM9 Identity-based Cryptographic
Algorithms

Part 1: General

Cryptography Standardization

Technical Committee of China

Issued on 2012-03-21 Translated on 2024-10-30

i

Contents

Foreword... iii

1 Scope... 1

2 Normative references ..1

3 Terms and definitions ...1

3.1 identity ... 1

3.2 master key.. 1

3.3 key generation center (KGC)..1

4 Symbols and abbreviations .. 1

5 Finite field and elliptic curve ... 3

5.1 Finite field... 3

5.2 Elliptic curves over finite field ..4

5.3 Elliptic curve group .. 5

5.4 Scalar multiplication on elliptic curve ...5

5.5 Verification of points in a subgroup of an elliptic curve ...6

5.6 Discrete logarithm problem...6

6 Bilinear pairings and secure curves ...6

6.1 Bilinear pairings ...6

6.2 Security ...7

6.3 Embedding degrees and secure curves .. 7

7 Data types and conversions ... 8

7.1 Data type ..8

7.2 Data type conversions ...8

8 System parameters and parameters verification ..13

8.1 System parameters .. 13

8.2 Verification of the system parameters ...13

Annex A (informative) Elliptic curve basics ...15

A.1 Finite field.. 15

A.2 Elliptic curve scalar multiplication .. 19

A.3 Discrete logarithm problem.. 21

A.4 Compression of points on elliptic curve .. 22

Annex B (informative) Computation of bilinear pairings over elliptic curves .. 24

ii

B.1 Overview...24

B.2 Miller's algorithm... 24

B.3 Computation of the Weil pairing ...25

B.4 Computation of the Tate pairing ... 25

B.5 Computation of the Ate pairing ... 27

B.6 Computation of the R-ate pairing ... 30

B.7 Pairing-friendly elliptic curves .. 33

Annex C (informative) Number-theoretic algorithm...34

C.1 Calculation over finite fields ...34

C.2 Polynomials over finite fields ... 38

C.3 Elliptic curve algorithms ...39

Bibliography .. 41

iii

Foreword

GM/T 0044 “SM9 Identity-based Cryptographic Algorithms” consists of 5 parts:

 Part 1: General

 Part 2: Digital Signature Algorithm

 Part 3: Key Exchange Protocol

 Part 4: Key Encapsulation Mechanism and Public Key Encryption Algorithm

 Part 5: Parameter Definition

This document is the first part of GM/T 0044.

Copyright Notice

This standard is made available for public use. Permission is granted to use, reproduce, and distribute
this standard in whole or in part, without modification, for any purpose, provided that the source is
acknowledged. This permission does not extend to any derivative works. All other rights are reserved
by the copyright holder.

1

1 Scope

This part describes fundamental mathematical knowledge and cryptographic techniques necessary for
implementing cryptographic mechanisms provided in other parts of this standard.

This standard is applicable to the implementation, application and testing of commercial identity-based
cryptographic algorithms.

This standard applies to the elliptic curves over the finite field �� , where � is a prime number that
satisfies � > 2191.

2 Normative references

There are no normative references in this document.

3 Terms and definitions

3.1 identity

information that can be used to uniquely identify an entity, composed of non-repudiable information
about the entity, such as its distinguished name, email address, identity card number, telephone
number, and street address.

3.2 master key

topmost key in the key hierarchy of an identity–based cryptographic system, composed of the master
private key and master public key. The master public key is publicly available, while the master private
key is preserved by the KGC in secrecy. A user’s private key is generated by the KGC using the master
private key and the user’s identity. In an identity–based cryptographic system, the master private key is
usually generated by the KGC using random number generators; the master public key is generated
with the master private key and system parameters.

3.3 key generation center (KGC)

trusted authority responsible for the selection of the system parameters, generation of master keys and
generation of users’ private keys within SM9 identity-based cryptographic algorithms

4 Symbols and abbreviations

The following symbols and abbreviations apply to this part.

��: cofactor of the order of an elliptic curve relative to�

���: curve identifier used to distinguish the type of elliptic curve used, denoted by one byte

DLP: discrete logarithm problem over finite field

deg (�): the degree of the polynomial �(�)

�1, �2: two divisors of �

�: an elliptic curve over finite field

ECDLP: discrete logarithm problem over elliptic curves

2

�(��): a set consisting of all rational points (including the point at infinity �) of the elliptic curve � over
the finite field ��

� �� [�]: the set of �-torsion points in �(��), that is the torsion subgroup of �(��) of order �

�: a bilinear pairing from�1 × �2 to ��

���: bilinear pairing identifier used to distinguish the type of bilinear pairing used, denoted by one byte

��: a prime field with � elements

��: a finite field with � elements

��
∗: the multiplicative group composed of all the nonzero elements in ��

���: the�-dimensional extension field of the finite field ��

��: a multiplicative cyclic group of prime order�

�1: an additive cyclic group of prime order�

�2: an additive cyclic group of prime order�

gcd (�, �): the greatest common divisor of � and �

�: the embedding degree of the curve �(��) relative to�, where� is a prime factor of #�(��)

�: the degree of the finite field extension ���/��

mod �(�): the operation of modulo the polynomial �(�)

mod �: the operation of modulo �, for example, 23 mod 7 = 2

�: the order of the cyclic groups �1,�2 and��, which is a prime number greater than 2191

�: the point at infinity or the zero point on an elliptic curve, which is the identity element of the elliptic
curve additive group

� : � = (��, ��) is a nonzero point on an elliptic curve, where its coordinates �� and �� satisfy the
elliptic curve equation

�1: a generator of �1

�2: a generator of �2

� + �: addition of two points � and � on the elliptic curve E

�: a prime number greater than 2191

�: the number of elements in the finite field ��

��: the �-coordinate of point �

3

�||�: the concatenation of � and �, where � and � are bit strings or byte strings

� ≡ � (mod �): � and � are congruent modulo �, that is � mod � = � mod �

��: the �-coordinate of point �

#�(�): the number of points in �(�), also called the order of the elliptic curve group �(�), where � is a
finite field (including �� and ���)

〈�〉: the cyclic group generated by the point � on an elliptic curve

� �: the �multiple of a point � on an elliptic curve

[�, �]: the set of integers which are not less than � and not greater than �

⌈�⌉: ceiling function that maps to the smallest integer not less than �, for example, ⌈7⌉ = 7, ⌈8.3⌉ = 9

⌊�⌋: floor function that maps to the largest integer not greater than �, for example, ⌊7⌋ = 7, ⌊8.3⌋ = 8

�: twisted curve parameter

�: a homomorphism from�2 to �1 satisfying �1 = �(�2)

⊕: the bitwise XOR operator that operates on two-bit strings of the same length

5 Finite field and elliptic curve

5.1 Finite field

5.1.1 Overview

A field consists of a non-empty set �with two operations: the addition (denoted by "+") and the
multiplication (denoted by "∙").

It satisfies following properties:
a) (�, +) is an additive abelian group, in which 0 denotes the identity element;
b) (� \ {0}, ∙) is a multiplicative abelian group, in which 1 denotes the identity element;
�) Distributive law: (� + �)� = �� + �� for all �, �, � ∈ �.

If � is a finite set, then the field is called a finite field. The number of elements in the finite field is called
the order of the finite field.

5.1.2 Prime field ��

When the order of a finite field is prime, we call the field a prime field.

Let � be a prime number, then the residue of integers modulo � , {0,1, …� − 1 } , with respect to the
addition modulo � and the multiplication modulo � can construct a prime field of order �, denoted by ��.

�� has the following properties:
a) the additive identity element is 0;
b) the multiplicative identity element is 1;
�) the addition of field elements is that of integers modulo �, namely, if �, � ∈ ��, then � + � = (� +
�) mod �;

4

d) the multiplication of field elements is that of integers modulo �, namely, if �, � ∈ ��, then � ∙ � =
(� ∙ �) mod �.

5.1.3 Finite field ���

Let � be a prime or a prime power, �(�) be an � -degree (� > 1) irreducible polynomial (reduced
polynomial or field polynomial) in the polynomial ring ��[�], quotient ring �� � /(�(�)) be a finite field
with �� elements (denoted by ���), then ��� is the extension field of ��, �� is the subfield of ���, and�
is the extension degree. ��� can be seen as the �-dimensional vector space of �� and its elements can
be uniquely represented by �0�0 + �1�1 + …��−1��−1, where �� ∈ �� , �0, …, ��−1 is a basis of ���

over ��.

The elements of ��� can be represented via polynomial basis or normal basis. In this standard, unless
otherwise specified, all elements of ��� are represented by polynomial basis.

Choose a monic irreducible polynomial � � = �� + ��−1��−1 + … + �2�2 + �1� + �0 (�� ∈ ��, � =
0,1, …, � − 1), then ��� is composed of all polynomials in the polynomial ring ��[�] of degree less than
� . The set of polynomials {��−1, ��−2, …, �, 1} is a basis of ��� over �� , which is called a polynomial
basis. For any element �(�) = ��−1��−1 + ��−2��−2 + … + �1� + �0 in ��� , its coefficients over ��
constitute an � -dimensional vector, denoted by � = (��−1, ��−2, …, �1, �0) , where �� ∈ ��, � =
0,1, …, � − 1.

��� has the following properties:
a) The zero element 0 is represented by an�-dimensional vector (0,0, …0,0,0);
b) The multiplicative identity element is represented by an�-dimensional vector (0,0, …0,0,1);
�) The addition of two field elements is the addition of vectors, and each vector component adopts
addition of field ��;
d) The multiplication of elements � and � is defined like this: let � and � correspond to the
polynomials �(�) and �(�) over �� respectively; then, � ∙ � is defined as the corresponding vector of the
polynomial (� � ⋅ �(�)) mod �(�);
e) The inverse element: suppose �(�) is the corresponding polynomial of � over ��, �−1 (�) is the
corresponding polynomial of �−1 over ��, such that �(�) ∙ �−1(�) = 1 mod �(�).

See Annex A.1 for more details about ���.

5.2 Elliptic curves over finite field

The elliptic curve over finite field ��� (� ≥ 1) is a set of points. A point � (except the point �) on the
elliptic curve can be represented by the coordinates � = (��, ��), where �� and �� are field elements
satisfying a certain equation, and are called the �-coordinate and �-coordinate, respectively.

This part describes elliptic curves whose characteristic is a large prime �.

In this part, the points on an elliptic curve are represented by affine coordinates, unless otherwise
specified.

The equation of elliptic curves defined over ��� is:

�2 = �3 + �� + �, �, � ∈ ���, and 4�3 + 27�2 ≠ 0. (1)

The elliptic curve � ��� is defined as:

5

� ��� = �, � �, � ∈ ���, satisfying the equation 1 ∪ � , where � is the point at infinity.

The number of points on the elliptic curve � ��� is represented by #� ��� , which is also called the
order of � ��� .

This standard requires the prime � > 2191.

Let � and �' be elliptic curves defined over ��. If there exists an isomorphic map��: �'(��) → �(���),
where � is the smallest integer which makes the map exist, then �' is called the degree � twisted curve
of �. There are three cases of the value of �when � ≥ 5:
a) If � = 0, � ≠ 0, then � = 6, and �': y2 = �3 + ��, �6: �' → �: (�, �) ↦ (�−1/3�, �−1/2�);
b) If � = 0, � ≠ 0, then � = 4, and �': y2 = �3 + ���, �4: �' → �: (�, �) ↦ (�−1/2�, �−3/4�);
�) If � ≠ 0, � ≠ 0, then � = 2, and �': y2 = �3 + �2�� + �3�, �2: �' → �: (�, �) ↦ (�−1�, �−3/2�).

5.3 Elliptic curve group

The points on elliptic curve � ��� , where � ≥ 1 , constitute an abelian group based on the following
addition operation rules:
a) � + � = �;
b) ∀� = (�, �) ∈ � ��� \ {�}, � + � = � + � = �;
�) ∀� = (�, �) ∈ � ��� \ {�}, the inverse element of � is –� = (�, − �), and � + (− �) = �;
d) The addition rules for two different points (wherein these points are not the inverse of each other):
Let �1 = (�1, �1) ∈ � ��� \ {�}, �2 = (�2, �2) ∈ � ��� \ {�}, and �1 ≠ �2.
Let �3 = (�3, �3) = �1 + �2, then

�3 = �2 − �1 − �2,
�3 = � �1 − �3 − �1,

where

� =
�2 − �1

�2 − �1
.

e) Point doubling:

Let �1 = (�1, �1) ∈ � ��� \ {�}, and �1 ≠ 0, �3 = (�3, �3) = �1 + �1, then

�3 = �2 − 2�1,
�3 = � �1 − �3 − �1,

where

� =
3�1

2 + �
2�1

.

5.4 Scalar multiplication on elliptic curve

The repeated addition of the same point is called the scalar multiplication of the point. Let � be a
positive integer, � be a point on the elliptic curve, then the � multiple of the point � is denoted by � =
[�]� = � + � + … + �� � ���� ���

��� � �����
.

6

Scalar multiplication can be extended to 0-multiple and negative-multiple operations: [0]� = � , [−
�]� = [�](− �).

Scalar multiplication can be calculated efficiently using certain techniques; please refer to Annex A.2 for
them.

5.5 Verification of points in a subgroup of an elliptic curve

Input: The parameters � and � which define the elliptic curve equation over ��� , where � is an odd
prime and � ≥ 1, the order � of the subgroup � of the elliptic curve � ��� , a pair of elements in ���

(�, �).

Output: If (�, �) is an element of the group�, then output “valid”, otherwise output “invalid”.

a) Check if (�, �) satisfies the equation of the elliptic curve �2 = �3 + �� + � over ���;
b) Let � = (�, �), check if � � = �.

If any of these above verifications fail, output “invalid”, otherwise output “valid”.

5.6 Discrete logarithm problem (DLP)

5.6.1 Discrete logarithm problem over finite field

The set of all nonzero elements in ��� (� is an odd prime, � ≥ 1) forms a multiplicative cyclic group,
denoted by ���

∗ . An element � ∈ ���
∗ is called a generator if it satisfies ���

∗ = �� | 0 ≤ � ≤ �� − 2 . The
minimal integer � such that �� = 1 is called the order of � in ���

∗ . The order of ���
∗ is �� − 1, so � | �� − 1.

Suppose the generator of ���
∗ is �, � ∈ ���

∗ , the discrete logarithm problem over a finite field is to find
the integer � ∈ 0, �� − 1 such that � = �� in ���

∗ .

5.6.2 Elliptic curve discrete logarithm problem (ECDLP)

For an elliptic curve � ��� (� ≥ 1), the point � ∈ � ��� of order � and � ∈ 〈�〉, ECDLP is to find � ∈
[0, � − 1] satisfying � = [�]�.

6 Bilinear pairings and secure curves

6.1 Bilinear pairings

Let (�1, +), (�2, +) and (��, ·) be three cyclic groups. The order of �1, �2 and �� is a prime �, �1 is a
generator of �1 , �2 is a generator of �2 , and there exists a homomorphism � from �2 to �1 such
that�(�2) = �1.

Bilinear pairing � is a map of �1 × �2 → �� satisfying the following conditions:
a) Bilinearity: for any � ∈ �1, � ∈ �2, �, � ∈ ℤ�, � � �, � � = �(�, �)��;
b) Non-degeneracy: �(�1, �2) ≠ 1��;
�) Computability: for any � ∈ �1, � ∈ �2, there exists an efficient algorithm to compute �(�, �).

Bilinear pairings used in this part are defined on elliptic curve groups, such as the Weil pairing, the Tate
pairing, the Ate pairing and the R-ate pairing.

7

6.2 Security

The security of bilinear pairings is based on the following hard problems:

Problem 1 (Bilinear Inverse Diffie-Hellman Problem, BIDH) For �, � ∈ [1, � − 1], given � �1, [�]�2,
it is hard to compute �(�1, �2)�/�.

Problem 2 (Decisional Bilinear Inverse Diffie-Hellman Problem, DBIDH) For �, �, � ∈ [1, � − 1], it
is hard to distinguish (�1, �2, � �1, � �2, � �1, �2

�/�) from (�1, �2, � �1, � �2, � �1, �2
�).

Problem 3 (�-Bilinear Inverse Diffie-Hellman Problem, �-BDHI) For integer � and � ∈ [1, � − 1] ,
given (�1, � �1, �2, � �2, �2 �2, …, �� �2), it is hard to compute � �1, �2

1/�.

Problem 4 (� -Gap-Bilinear Inverse Diffie-Hellman Problem, � -Gap-BDHI) For integer � and � ∈
[1, � − 1], given (�1, � �1, �2, � �2, �2 �2, …, �� �2) and the DBIDH algorithm, it is hard to compute
� �1, �2

1/�.

The security of the SM9 identity-based cryptographic algorithms is founded on the computational
intractability of the above problems. The hardness of these problems implies that the discrete logarithm
problems over �1 , �2 , and �� are also intractable; and when selecting an elliptic curve, the primary
consideration is to ensure the discrete logarithm problems remain intractable on the selected curve.

6.3 Embedding degrees and secure curves

Let � be an � -order subgroup of the elliptic curve �(��) . The smallest positive integer � such that
� | �� − 1 is called the embedding degree of � relative to � , also known as the embedding degree of
�(��) relative to�.

Let �1 be an � -order subgroup of �(���1) , where �1|� , and �2 be an � -order subgroup of �(���2) ,
where �2|�, then �� of the bilinear pairings based on the elliptic curves is a subgroup of ���

∗ . Thus, the
bilinear pairings based on the elliptic curves can convert the elliptic curve discrete logarithm problem
to the discrete logarithm problem over the finite field ���

∗ . The security of the curve improves as the size
of the extension field increases (if no faster discrete logarithm algorithm exists in the field), yet it
becomes harder to compute the bilinear pairings. Hence it is necessary to adopt an elliptic curve with
an appropriate embedding degree while achieving the desired security level. This standard specifies
that �� > 21536.

This standard specifies the use of the following curves:
a) Ordinary curves whose base field is ��, where � is a prime greater than 2191, and the embedding
degree � = 2�3�, where � > 0 and � ≥ 0;
b) Supersingular curves whose base field is ��, where � is a prime greater than 2768, and the
embedding degree � = 2.

For� less than 2360, it is recommended that
a) � − 1 has a prime factor greater than 2190;
b) � + 1 has a prime factor greater than 2120.

8

7 Data types and conversions

7.1 Data type

The data types include bit string, byte string, field element, elliptic curve point and integer in this
standard.

Bit string: an ordered sequence of 0’s and 1’s.

Byte string: an ordered sequence of bytes, where one byte contains 8 bits, and the leftmost bit is the
most significant bit.

Field element: the elements of finite field ��� (� ≥ 1).

Elliptic curve point: a point � ∈ � ��� (� ≥ 1) is either a pair of field elements (��, ��), where ��, ��
satisfy the ecliptic curve equation, or the point at infinity �.

A point can be encoded as a byte string in many forms. A byte PC is used to indicate which form is used.
The byte string representation of the point at infinity � is a unique zero byte �� = 00. A nonzero point
� = (��, ��) can be represented as one of the following three bytes string forms:
a) Compressed form, �� = 02 or 03;
b) Uncompressed form, �� = 04;
�) Hybrid form, �� = 06 or 07.

Note: The hybrid form contains both the compressed and uncompressed forms. In implementation, the
hybrid form can be converted into compressed or uncompressed forms. Implementation of the
compressed and hybrid forms are optional in this standard. Please refer to Annex A.4 for the details of
the compressed form.

7.2 Data type conversions

7.2.1 Conversion relations between data types

Figure 1 indicates the conversion relations between the data types. The subclauses for the
corresponding conversion methods are given by the marks along the lines.

7.2.9 7.2.8

7.2.6 7.2.7

field element

byte string integerbit string

point

7.2.2

7.2.3

7.2.5

7.2.4

Figure 1: Data types and their conversions

9

7.2.2 Conversion of an integer to a byte string

Input: a non-negative integer �, and the target length of the byte string � (where � satisfies 28� > �).

Output: a byte string� of � bytes.

a) Let��−1, ��−2, …, �0 be the individual bytes of� from left to right;

b) The bytes of� satisfy:

� =
�=0

�−1

28���� .

7.2.3 Conversion of a byte string to an integer

Input: a byte string� of � bytes.

Output: an integer �.

a) Let��−1, ��−2, …, �0 be the individual bytes of� from left to right;

b) Convert� to the integer �:

� =
�=0

�−1

28���� .

7.2.4 Conversion of a bit string to a byte string

Input: a bit string � of � bits.

Output: a byte string� of � bytes, where � = �/8 .

a) Let ��−1, ��−2, …, �0 be the individual bits of � from left to right;

b) Let��−1, ��−2, …, �0 be the individual bytes of� from left to right, then

�� = �8�+7�8�+6…�8�+1�8�, where 0 ≤ � < �, and when 8� + � ≥ � and 0 < � ≤ 7, �8�+� = 0.

7.2.5 Conversion of a byte string to a bit string

Input: a byte string� of � bytes.

Output: a bit string � of � bits, where � = 8�.

a) Let��−1, ��−2, …, �0 be the individual bytes of� from left to right;

b) Let ��−1, ��−2, …, �0 be the individual bits of � from left to right, then �� is the (� − 8� + 1)th bit of ��
from the right, where � = �/8 .

10

7.2.6 Conversion of a field element to a byte string

Input: an element � = ��−1, ��−2, …, �1, �0 in ��� � ≥ 1 , and � = �.

Output: a byte string � of length �, where � = log2�/8 × �.

a) If � = 1, then � = �0 (� = �), α is an integer in [0, � − 1], convert � to a byte string � of � bytes as
specified in 7.2.2;

b) If� > 1, then � = ��−1, ��−2, …, �1, �0 (� = �), where �� ∈ ��, � = 0,1, …, � − 1;

1) Let � = log2�/8 .

2) For � from� − 1 to 0:
Convert �� � = � to a byte string �� of � bytes as specified in 7.2.2.

3) � = ��−1||��−2||…||�0.

7.2.7 Conversion of a byte string to a field element

Case 1: Convert to element in the base field

Input: a field ��, � = �, and a byte string � of � bytes, where � = log2�/8 .

Output: an element � in ��.

If � = � , convert � to an integer � as specified in 7.2.3. If � is not in the interval [0, � − 1] , report an
error.

Case 2: Convert to element in extension field

Input: a field ��� (� ≥ 2), � = �, and a byte string � of � bytes, where � = log2�/8 × �.

Output: an element � in ���.

a) Equally divide the byte string � into� parts, where the length of each part is �/� bytes, denote it as
� = (��−1, ��−2, …, �1, �0);

b) For � from� − 1 to 0:

Convert �� to an integer �� as specified in 7.2.3, and if � is not in [0, � − 1], report an error.

c) If � = �, output � = (��−1, ��−2, …, �1, �0).

7.2.8 Conversion of a point to a byte string

There are two cases in the conversion of a point to a byte string.

The first case is that in the computation process, convert the elliptic curve point to a byte string before
setting it as the input of some function (e.g., a hash function). In this case, we only need to convert the
point to byte string.

11

The second case is when transmitting or storing elliptic curve points, in order to reduce the
transmission quantity or storage space, we can use the compressed or the hybrid compressed form of
the points. In such case, we need to add an identifier �� to indicate the encoding form of the point.

The details of the two cases of conversion are as follows.

Case 1: Direct conversion

Input: a point � = (��, ��) on the elliptic curve �(���)(� ≥ 1), where � ≠ �.

Output: a byte string �1||�1 of 2� bytes. (If� = 1, � = log2�/8 ; if� > 1, � = log2�/8 × �.)

a) Convert the field element �� to the byte string �1 of � bytes as specified in 7.2.6;

b) Convert the field element �� to the byte string �1 of � bytes as specified in 7.2.6;

c) Output the byte string �1||�1.

Case 2: Conversion by adding a byte string identifier ��

Input: a point � = (��, ��) on the elliptic curve �(���)(� ≥ 1), where � ≠ �.

Output: a byte string ��. If the uncompressed form or the hybrid form is used, output a byte string of
length 2� + 1; if the compressed form is used, output a byte string of � + 1 bytes. (If � = 1, � = log2�/8 ;
if� > 1, � = log2�/8 × �.)

a) Convert the field element �� to the byte string �1 of � bytes as specified in 7.2.6;

b) If the compressed form is used, then

1) Compute the bit ���. (See Annex A.4.)

2) If ��� = 0, then let �� = 02; if ���=1, �� = 03;

3) Output the byte string �� = ��||�1.

c) If the uncompressed form is used, then

1) Convert the field element �� to the byte string �1 of � bytes as specified in 7.2.6;

2) Let �� = 04;

3) Output the byte string �� = ��|| �1||�1.

d) If the hybrid form is used, then

1) Convert the field element �� to the byte string �1 of � bytes as specified in 7.2.6;

2) Compute the bit ���; (See Annex A.4.)

3) If ��� = 0, then let �� = 06; if ��� = 1, �� = 07;

4) Output the byte string �� = ��|| �1||�1.

12

7.2.9 Conversion of a byte string to a point

The conversion of a byte string to a point is the inverse process of 7.2.8. The conversion is explained in
the following two cases.

Case 1: Direct conversion

Input: field elements � and � which define an elliptic curve over ��� (� ≥ 1), and the byte string �1||�1
of length 2� bytes. The lengths of both �1 and �1 are � bytes. (If � = 1 , � = log2�/8 ; if � > 1 , � =
log2�/8 × �.).

Output: a point � = (��, ��) of the elliptic curve, where � ≠ �.

a) Convert the byte string �1 to a field element �� as specified in 7.2.7;

b) Convert the byte string �1 to a field element �� as specified in 7.2.7;

Case 2: Conversion of a byte string containing the byte identifier ��

Input: field elements � and � which define an elliptic curve over ��� (� ≥ 1), and the byte string ��. If
the uncompressed or hybrid forms are used, the length of �� is 2� + 1 bytes. If the compressed form is
used, the length of �� is � + 1 bytes. (If� = 1, then � = log2�/8 ; if� > 1, then � = log2�/8 × �.)

Output: a point � = (��, ��) of the elliptic curve, where � ≠ �.

a) If the compressed form is used, then �� = ��||�1 ; if the uncompressed or hybrid forms are used,
�� = ��|| �1||�1, where �� is a single byte, and both �1 and �1 are byte strings of � bytes;

b) Convert the byte string �1 to a field element �� as specified in 7.2.7;

c) If the compressed form is used, then

1) Check whether �� = 02 or �� = 03; if not, report an error;
2) If �� = 02, then let ��� = 0; if �� = 03, let ��� = 1;
3) Convert (��, ���) to a point (��, ��) on the elliptic curve; (See Annex A.4.)

d) If the uncompressed form is used, then

1) Check whether PC = 04; if not, report error;

2) Convert the byte string �1 to a field element �� as specified in 7.2.7;

e) If the hybrid form is used, then

1) Check whether �� = 06 or �� = 07; if not, report an error;

2) Perform e.2.1) or e.2.2):

2.1) Convert the byte string �1 to a field element �� as specified in 7.2.7;

2.2) If �� = 06 , then let ��� = 0 , otherwise let ��� = 1; convert (��, ���) to a point (��, ��) on
the elliptic curve; (See Annex A.4.)

f) Check whether (��, ��) satisfies the equation of the curve; if not, report an error;

13

g) � = (��, ��).

8 System parameters and parameters verification

8.1 System parameters

The system parameters include:

a) The curve identifier ��� is denoted by one byte: 0x10 represents an ordinary curve over ��
(where the prime number � > 3), 0x11 represents a supersingular curve over �� , and 0x12
represents an ordinary curve and the corresponding twisted curve over ��;

b) The parameter of the base field �� of the elliptic curve: the parameter of the base field is a
prime � > 3;

c) Two elements � and � in ��, which define the equation of the elliptic curve �: �2 = �3 + �� + �;
the twisted curve parameter � (if the least 4 significant bits of ��� is 2);

d) The cofactor �� and a prime number �, where �� × � = #�(��). This document requires � >
2191 and � is not divisible by ��. If � < 2360, this document recommends that � − 1 has prime
factors greater than 2190 and� + 1 has prime factors greater than 2120;

e) The embedding degree � of the curve �(��) relative to � . (The cyclic group with order
��, ∙ ⊂ ���

∗). This document specifies that �� > 21536;

f) A generator �1 = (��1 , ��1) of the cyclic group (�1, +), where �1 ≠ �;

g) A generator �2 = (��2 , ��2) of the cyclic group (�2, +), where �2 ≠ �;

h) The bilinear pairing �: �1 × �2 → �� is denoted by one byte identifier ���: 0x01 represents the
Tate pairing, 0x02 represents the Weil pairing, 0x03 represents the Ate pairing, and 0x04
represents the R-ate pairing;

i) (Optional) The parameters �1, �2, both of which are factors of �;

j) (Optional) The homomorphism� from�2 to �1 such that �1 = �(�2);

k) (Optional) The characteristic of the base field of the BN curves, the order of curve � , and the
trace �� of the Frobenius map which can be determined by the parameter �, where � is at least
63 bits.

8.2 Verification of the system parameters

The following conditions shall be verified by the generator of the system parameters. They can also be
verified by the users of the system parameters.

Input: the set of the system parameters.

Output: if all parameters are valid, output “valid”; otherwise, output “invalid”.

a) Verify that � is a prime greater than 3; (See Annex C.1.5.)

b) Verify that �, � are integers in [0, � − 1];

14

c) Verify that 4�3 + 27�2 ≠ 0 over ��; if the least 4 significant bits of ��� are 2, verify that � is a non-
square element; (See Annex C.1.4.3.1.)

d) Verify that � is a prime greater than 2191 and �� is not divisible by �; if � < 2360 , verify that � − 1
has prime factors greater than 2190 and� + 1 has prime factors greater than 2120;

e) Verify that |� + 1 − �� × �| < 2�1/2;

f) Verify that �� > 21536 and � is the smallest positive integer� such that� | (�� − 1);

g) Verify that (��1, ��1) is an element of �1;

h) Verify that (��2, ��2) is an element of �2;

i) Verify �(�1, �2) ∈ ���
∗ \ {1}, and � �1, �2

� = 1;

j) (Optional) Verify �1|� and �2|�;

k) (Optional) Verify that �1 = �(�2);

l) (Optional) Verify that � has at least 63 bits.

If any of the above verification fails, output “invalid”; otherwise, output “valid”.

15

Annex A
(informative)

Elliptic curve basics

A.1 Finite field

A.1.1 Prime field ��

Suppose � is prime, then in the set of remainders {0,1,2, . . . , � − 1} modulo � , the addition and
multiplication in terms of the arithmetic of integers modulo � form a � -order prime field, which is
symbolized by �� . The additive identity is 0, while the multiplicative identity is 1. The elements of ��
have the following operation rules:

-- Addition: if �, � ∈ ��, then � + � = �, where � = (� + �) mod �, � ∈ [0, � − 1].

-- Multiplication: if �, � ∈ ��, then � ⋅ � = �, where � = (�·�) mod �, � ∈ [0, � − 1].

Let ��
∗ be the multiplicative group composed of all nonzero elements of �� . Since ��

∗ is a multiplicative
group, there is at least one element � in �� , satisfying that any nonzero element in �� can be
represented by the power of �. We call � the generator (or primitive element) of ��

∗ , and ��
∗ = �� 0 ≤

� ≤ � − 2}. Let � = �� ∈ ��
∗ , and 0 ≤ � ≤ � − 2, then the multiplicative inverse of � is: �−1 = ��−1−�.

Example 1: the prime field �19 = {0, 1, 2, …, 18}.

Example of addition in �19: 10, 14 ∈ �19, 10 + 14 = 24, 24 mod 19 = 5, then 10 + 14 = 5.

Example of multiplication in �19: 7, 8 ∈ �19, 7 × 8 = 56, 56 mod 19 = 18, then 7 ⋅ 8 = 18.

13 is a generator of �19
∗ , then the elements of �19

∗ can be represented by the powers of 13:
130 = 1, 131 = 13, 132 = 17, 133 = 12, 134 = 4, 135 = 14, 136 = 11, 137 = 10, 138 = 16, 139 =
18,1310 = 6, 1311 = 2, 1312 = 7, 1313 = 15, 1314 = 5, 1315 = 8, 1316 = 9, 1317 = 3, 1318 = 1.

A.1.2 Finite field ���

Suppose � is a prime or a power of a prime, �(�) be an�-degree (� > 1) irreducible polynomial (which
is called the reduced polynomial or the field polynomial) in the polynomial ring ��[�], the quotient ring
��[�]/(�(�)) be a finite field composed of �� elements, then ��� is an extension field of �� , �� is a
subfield of ��� ,� is the extension degree. ��� can be seen as the �-dimensional vector space of ��, that
is to say there exist � elements �0, �1, …, ��−1 in ��� , such that ∀� ∈ ��� , � can be uniquely
represented by � = ��−1��−1+⋯ + �1�1 + �0�0 (�� ∈ ��), then {��−1, ��−2, ⋯, �1, �0} is called a basis
of ��� over �� . Given such a basis, then we can use the vector (��−1, ��−2, …, �1, �0) to represent the
field element �.

There are many possible choices for the selection of a basis, such as the polynomial basis and the
normal basis.

Suppose the irreducible polynomial �(�) is a monic polynomial � � = �� + ��−1��−1 + … + �2�2 +
�1� + �0 (�� ∈ ��, � = 0,1, …, � − 1), and the elements of ��� can be represented by all polynomials with
degree less than � in the polynomial ring ��[�] , that is, ��� = ��−1��−1 + ��−2��−2 + ··· + �1� +
�0 �� ∈ ��, � = 0,1, . . . , � − 1}. The set of polynomials {��−1, ��−2, …, �, 1} is a basis of ��� as a vector

16

space over �� , which is called a polynomial basis. When � has a divisor � (1 < � < �), ��� could be
extended to ��� . If a suitable �/�-degree irreducible polynomial is selected from ���[�] to act as ��� ’s
reduced polynomial on ��� , then ��� could be generated according to the towering method. This
extension’s basic forms are still vectors composed of the elements of �� . For example, when � = 6 , ��
could be extended three times to the extension field ��3 , and ��3 could be further extended twice to the
extension field ��6 . �� could be extended twice to the extension field ��2 , and ��2 could be further
extended three times to the extension field ��6.

The basis of the form {�, ��, ��2, . . . , ���−1} of ��� over �� are called normal basis, where � ∈ ��� . ∀� ∈
��� , � could be represented as � = �0� + �1�� + ··· + ��−1���−1 , where �� ∈ �� , � = 0,1, . . . , � − 1. For
any finite field �� and its extension field ���, such basis always exists.

Unless otherwise specified, all elements in ��� are represented by the polynomial basis.

The field element ��−1��−1 + ��−2��−2 + ··· + �1� + �0 could be represented by the vector
(��−1, ��−2, …, �1, �0) in terms of the polynomial basis, so ��� = ��−1, ��−2, …, �1, �0 �� ∈ ��, � =
0,1, …, � − 1}.

The multiplicative identity is represented by (0, …, 0,1) , and the zero element is represented by
(0, …, 0,0). The addition and multiplication of the field elements are defined as follows.

Addition. ∀ ��−1, ��−2, …, �1, �0 , ��−1, ��−2, …, �1, �0 ∈ ��� , then ��−1, ��−2, …, �1, �0 +
��−1, ��−2, …, �1, �0 = ��−1, ��−2, …, �1, �0 , where �� = �� + �� , � = 0,1, …, � − 1 . That is, addition is
implemented by component-wise addition in ��.

Multiplication. ∀ ��−1, ��−2, …, �1, �0 , ��−1, ��−2, …, �1, �0 ∈ ��� , then ��−1, ��−2, …, �1, �0 ⋅
��−1, ��−2, …, �1, �0 = ��−1, ��−2, …, �1, �0 , where the polynomial ��−1��−1 + ��−2��−2 + ··· +

�1� + �0 is the remainder of ��−1��−1 + ��−2��−2 + ··· + �1� + �0 ⋅ (��−1��−1 + ��−2��−2 + ··· +
�1� + �0)modulo �(�) in ��[�].

��� contains �� elements. Let ���
∗ be the multiplicative group composed of all nonzero elements in ��� .

Since ��� is a multiplicative group, there exists at least one element � in ��� such that any nonzero
element of ��� can be represented by the powers of �. � is called the generator (or primitive element)
of ���

∗ , and ���
∗ = �� 0 ≤ � ≤ �� − 2}. Let � = �� ∈ ���

∗ , where 0 ≤ � ≤ �� − 2, then the multiplicative
inverse of � is �−1 = ���−1−�.

Example 2: the polynomial basis representation of �32.

Let � � = �2 + 1 be an irreducible polynomial over �3, then the elements of �32 are:
0,0 , 0,1 , 0,2 , 1,0 , 1,1 , 1,2 , 2,0 , 2,1 , 2,2 .
Addition: 2,1 + 2,0 = 1,1 .
Multiplication: 2,1 ⋅ 2,0 = 2,2

2� + 1 ⋅ 2� = 4�2 + 2�
= �2 + 2�
= 2� + 2 mod � �

That is, 2� + 2 is the remainder of 2� + 1 ⋅ 2�modulo �(�).

The multiplicative identity is (0, 1), and � = � + 1 is a generator of �32
∗ , then the powers of � are

�0 = (0,1), �1 = (1,1), �2 = (2,0), �3 = (2,1), �4 = (0,2), �5 = (2,2), �6 = (1,0), �7 = (1,2), �8 = (0,1).

17

A.1.3 Elliptic curves over finite fields

A.1.3.1 Overview

There are two common representations for the elliptic curves over finite fields: an affine coordinate and
a projective coordinate.

A.1.3.2 Affine coordinate

Suppose � is a prime greater than 3, the elliptic curve equation over ��� in the affine coordinate system
can be simplified as �2 = �3 + �� + � , where �, � ∈ ��� , satisfying 4�3 + 27�2 mod � ≠ 0 . The set of
points on the elliptic curve is denoted by �(���) = �, � �, � ∈ ���, satisfying the equation �2 = �3 +
�� + �} ∪ {�}, where � in the point at infinity, also called the zero point.

The points on � ��� form an abelian group according to the following addition operation rules:
a) � + � = �;
b) ∀� = (�, �) ∈ �(���) \ {�}, � + � = � + � = �;
�) ∀� = (�, �) ∈ �(���) \ {�}, the inverse element of � is –� = �, − � , � + −� = �;
d) �1 = (�1, �1) ∈ �(���) \ {�}, �2 = �2, �2 ∈ �(���) \ {�}, and �3 = (�3, �3) = �1 + �2 ≠ �, then

�3 = �2 − �1 − �2,
�3 = � �1 − �3 − �1,

where

λ =

�2 − �1

�2 − �1
, if �1 ≠ �2,

3�1
2 + �
2�1

, if �1 = �2, and �2 ≠− �1.

Example 3: an elliptic curve over ���

The equation over �19: �2 = �3 + � + 1, where � = 1, � = 1. The points on the curve are:

(0,1) , (0,18) , (2,7) , (2,12) , (5,6) , (5,13) , (7,3) , (7,16) , (9,6) , (9,13) , (10,2) , (10,17) , (13,8) , (13,11) ,
(14,2), (14,17), (15,3), (15,16), (16,3), (16,16).

There are 21 points (including �) on �(�19).

a) Let �1 = (10, 2), �2 = (9, 6), then compute �3 = �1 + �2:

λ =
�2 − �1

�2 − �1
=

6 − 2
9 − 10 =

4
−1 =− 4 ≡ 15 mod 19 ,

�3 = 152 − 10 − 9 = 225 − 10 − 9 = 16 − 10 − 9 = − 3 ≡ 16 mod 19 ,
�3 = 15 × 10 – 16 – 2 = 15 × –6 – 2 ≡ 3 mod 19 ,

thus, �3 = (16, 3).

b) Let �1 = (10, 2), then compute [2]�1:

18

λ =
3�1

2 + �
2�1

=
3 × 102 + 1

2 × 2 =
3 × 5 + 1

4 =
16
4 = 4 mod 19 ,

�3 = 42 − 10 − 10 = − 4 ≡ 15 mod 19 ,
�3 = 4 × 10 – 15 – 2 = –22 ≡ 16 mod 19 ,

thus, [2]�1 = (15, 16).

A.1.3.3 Projective coordinate

A.1.3.3.1 Standard projective coordinate system

The elliptic curve equation over ��� in the standard projective coordinate system can be simplified as
�2� = �3 + ���2 + ��3 , where �, � ∈ ��� , satisfying 4�3 + 27�2 ≠ 0 . The set of points on the elliptic
curve is denoted by � ��� = �, �, � �, �, � ∈ ��� , satisfying the equation �2� = �3 + ���2 + ��3} .
For (�1, �1, �1) and (�2, �2, �2), if there is a � ∈ ��� (� ≠ 0) such that �1 = ��2 , �1 = ��2 , and �1 = ��2 ,
then these two triples are equivalent, and they represent the same point.

If � ≠ 0 , let � = �/� , � = �/� , then the standard projective coordinates can be converted to the affine
coordinates: �2 = �3 + �� + �.

If � = 0, then the point (0,1,0) corresponds to the point at infinity � of the affine coordinate system.

In the standard projective coordinate system, the addition of the points on � ��� is defined as follows:
a) � + � = �;
b) ∀� = (�, �, �) ∈ �(���) \ {�}, � + � = � + � = �;
�) ∀� = (�, �, �) ∈ �(���) \ {�}, the inverse element of � is –� = ��, − ��, �� , � ∈ ��� � ≠
0 , and � + −� = �;
d) Let �1 = (�1, �1, �1) ∈ �(���) \ {�}, �2 = (�2, �2, �2) ∈ �(���) \ {�}, and �3 = �1 + �2 =
(�3, �3, �3) ≠ �.
If �1 ≠ �2, then
�1 = �1�2, �2 = �2�1, �3 = �1 − �2, �4 = �1�2, �5 = �2�1, �6 = �4 − �5, �7 = �1 + �2, �8 = �1�2, �9 = �3

2,
�10 = �3�9, �11 = �8�6

2 − �7�9, �3 = �3�11, �3 = �6(�9�1 − �11) − �4�10, �3 = �10�8.
If �1 = �2, then
�1 = 3�1

2 + ��1
2, �2 = 2�1�1, �3 = �1

2, �4 = �3�1�1, �5 = �2
2, �6 = �1

2 − 8�4, �3 = �2�6, �3 = �1 4�4 −
�6 − 2�5�3, �3 = �2�5.

A.1.3.3.2 Jacobian projective coordinate system

The elliptic curve equation over ��� in the Jacobian projective coordinate system can be simplified as
�2 = �3 + ���4 + ��6, where �, � ∈ ���, satisfying 4�3 + 27�2 ≠ 0. The set of points on the elliptic curve
is denoted by � ��� = �, �, � �, �, � ∈ ���, satisfying the equation �2 = �3 + ���4 + ��6} . For
(�1, �1, �1) and (�2, �2, �2) , if there is a � ∈ ��� (� ≠ 0) such that �1 = �2�2 , �1 = �3�2 , and �1 = ��2 ,
then these two triples are equivalent, and they represent the same point.

If � ≠ 0, let � = �/�2 , � = �/�3 , then the Jacobian projective coordinates can be converted to the affine
coordinates: �2 = �3 + �� + �.

If � = 0, then the point (1,1,0) corresponds to the point at infinity � of the affine coordinate system.

In the Jacobian projective coordinate system, the addition of the points on �(���) is defined as follows:
a) � + � = �;

19

b) ∀� = (�, �, �) ∈ �(���) \ {�}, � + � = � + � = �;
�) ∀� = (�, �, �) ∈ �(���) \ {�}, the inverse element of � is –� = �2�, − �3�, �� , � ∈ ��� � ≠
0 , and � + −� = �;
d) Let �1 = (�1, �1, �1) ∈ �(���) \ {�}, �2 = (�2, �2, �2) ∈ �(���) \ {�}, and �3 = �1 + �2 =
(�3, �3, �3) ≠ �.
If �1 ≠ �2, then
�1 = �1�2

2, �2 = �2�1
2, �3 = �1 − �2, �4 = �1�2

3, �5 = �2�1
3, �6 = �4 − �5, �7 = �1 + �2, �8 = �4 + �5, �9 =

�7�3
2, �3 = �6

2 − �9, �10 = �9
2 − 2�3, �3 = (�10�6 − �8�3

3)/2, �3 = �1�2�3.
If �1 = �2, then
�1 = 3�1

2 + ��1
4, �2 = 4�1�1

2, �3 = 8�1
4, �3 = �1

2 − 2�2, �3 = �1 �2 − �3 − �3, �3 = 2�1�1.

A.1.4 Order of elliptic curves over finite field

The order of an elliptic curve over finite field ��� is the number of elements in the set �(���), denoted
by #�(���) . According to the Hasse theorem, we have �� + 1 − 2��/2 ≤ #�(���) ≤ �� + 1 + 2��/2 ,
that is to say, #�(���) = �� + 1 − �, where � is called the Frobenius trace, satisfying |�| ≤ 2��/2.

If the Frobenius trace � is divisible by the characteristic of ��� , this curve is supersingular; otherwise, it
is non-supersingular.

Suppose �(���) is an elliptic curve over ��� , the integer � and �� are coprime, then the �-order torsion
subgroup of �(���) is � ��� � = � ∈ � ��� [�]� = �} and any � ∈ �(���)[�] is an �-fulcrum.

A.2 Elliptic curve scalar multiplication

The operation of adding a point along an elliptic curve to itself repeatedly is called the scalar
multiplication of the point. Let � be a positive integer, � be a point on an elliptic curve, then the �
multiple of the point � is denoted as � = � � = � + � + … + �� � ���� ���

��� � �����
.

Scalar multiplication can be extended to 0-scalar and negative-scalar: [0]� = �, [− �]� = [�](− �).

There are many ways to implement elliptic curve scalar multiplication, and the most fundamental three
methods are noted here, where 1 ≤ � < �.

Algorithm 1: Binary expansionmethod

Input: a point �, an �-bit integer � = ∑
�−1

�=0
��2�, �� ∈ {0, 1}.

Output: � = [�]�.

a) Set � = �;

b) For � = � − 1 to 0:

b.1)� = [2]�;

b.2) If �� = 1, then � = � + �;

�) Output �.

20

Algorithm 2: Addition and subtractionmethod

Input: a point �, an �-bit integer � = ∑
�−1

�=0
��2�, �� ∈ {0, 1}.

Output: � = [�]�.

a) Suppose the binary representation of 3� is ℎ�ℎ�−1…ℎ1ℎ0 , and the most significant bit ℎ� is 1.
Obviously � = � or � = � + 1;

b) The binary representation of � is ����−1…�1�0;

c) Set � = �;

d) For � = � − 1 to 1:

d.1) � = [2]�;

d.2) If ℎ� = 1 and �� = 0, then � = � + �;

d.3) If ℎ� = 0 and �� = 1, then � = � − �;

e) Output �.

Note: Subtracting the point (�, �) is equivalent to adding the point (�, − �) . There are many different
methods to accelerate this operation.

Algorithm 3: Sliding windowmethod

Input: a point �, an �-bit integer � = ∑
�−1

�=0
��2�, �� ∈ {0, 1}.

Output: � = [�]�.

Let the window length � > 1.

Pre-computation:

a) �1 = �, �2 = [2]�;

b) For � = 1 to 2�−1 − 1, compute �2�+1 = �2�−1 + �2;

c) Set � = � − 1, � = �.

Main loop:

d) When � ≥ 0:

d.1) if �� = 0, then � = [2]�, � = � − 1;

d.2) otherwise

d.2.1) let � be the smallest integer satisfying � − � + 1 ≤ � and �� = 1;

21

d.2.2) ℎ� = ∑
�−�

�=0
��+�2�;

d.2.3) � = [2�−�+1]� + �ℎ�;

d.2.4) set � = � − 1;

e) Output �.

A.3 Discrete logarithm problem

A.3.1 Methods to solve the field discrete logarithm problem

Let ��
∗ be the multiplicative group composed of all nonzero elements in the finite field �� . We call � the

generator of ��
∗ , and ��

∗ = �� 0 ≤ � ≤ � − 2} . The order of � ∈ �� is the smallest positive integer �
satisfying �� = 1. The order of the multiplicative group ��

∗ is � − 1, so � | � − 1.

Suppose the generator of the multiplicative group ��
∗ is � and � ∈ ��

∗ , the finite field discrete logarithm
problem is to determine the integer � ∈ [0, � − 2] such that � = �� mod �.

The existing attacks on the finite field discrete logarithm problem are:

a) Pohlig-Hellman method: let � be the largest prime divisor of � − 1 , then the time complexity is
�(�1/2);

b) BSGS method: the time and space complexity are both ��/2 1/2;

c) Pollard's method: the time complexity is ��/2 1/2;

d) Parallel Pollard's method: let � be the number of parallel processors, the time complexity is ��/
2 1/2/�;

e) Linear sieve method (for the prime fields ��): the time complexity is exp (1 +
� 1 log � 1/2 log log � 1/2);

f) Gauss integer method (for the prime fields ��): the time complexity is exp (1 +
� 1 log � 1/2 log log � 1/2);

g) Remainder listing sieve method (for prime fields ��): the time complexity is exp (1 +
� 1 log � 1/2 log log � 1/2);

h) Number field sieve method (for prime fields ��): the time complexity is exp (64/9 1/3 +
� 1 log � log log � 2 1/3);

i) Function field sieve method (for fields of small characteristics): the time complexity is
exp (� log � log log � 2 1/4+�(1)

) and quasi-polynomial time.

From the above enumerated methods for the finite field discrete logarithm problems and their time
complexity, we know that: for discrete logarithm problems over fields of large characteristics, there are
attack methods with sub-exponential complexity; for discrete logarithm problems over fields of small
characteristics, there are quasi-polynomial time attack methods.

22

A.3.2 Methods to solve the elliptic curve discrete logarithm problem

For an elliptic curve �(��) , the point � ∈ �(��) with order � and � ∈ 〈�〉 , the elliptic curve discrete
logarithm problem is to determine the integer � ∈ [0, � − 1] such that � = [�]�.

The existing attacks on ECDLP are:

a) Pohlig-Hellman method: let � be the largest prime divisor of �, then the time complexity is �(�1/2);

b) BSGS method: the time and space complexity are both ��/2 1/2;

c) Pollard's method: the time complexity is ��/2 1/2;

d) Parallel Pollard's method: let � be the numbers of parallel processors, the time complexity is ��/
2 1/2/�;

e) MOV method: Reduces the ECDLP over supersingular curves and similar curves to DLP over �� ’s
small extension fields (This is a method of sub-exponential complexity);

f) Anomalous method: efficient attack methods for the anomalous curves (curves of #�(��) = �)
(This is a method of polynomial complexity);

g) GHS method: use Weil descent technique to solve the ECDLP of curves over binary extension field
(the extension degree is a composite number), and convert the ECDLP to hyper-elliptic curve
discrete logarithm problem, and there is the algorithm with sub-exponential complexity to this
problem.

h) DGS-points decomposing method: use to compute the indexes used by elliptic curve discrete
logarithm over low-degree extension fields. In some special cases, its complexity is lower than the
square-root time method.

From the above description and analysis of ECDLP solutions and their time complexity, we can know
that: for the discrete logarithm problem of general curves, the current solutions have exponential
complexity, and no efficient attack method with sub-exponential complexity has been found; and for the
discrete logarithm problem of some special curves, there are attack algorithms with polynomial
complexity or sub-exponential complexity.

A.4 Compression of points on elliptic curve

A.4.1 Overview

For any nonzero point � = (��, ��) on �(��), this point can be represented simply by the �-coordinate
and a specific bit derived from �� and ��. This is the compression representation of points.

A4.2 Compression and decompressionmethods for points on elliptic curves over ��

Let � = (��, ��) be a point on �(��): �2 = �3 + �� + �, and ��� be the rightmost bit of ��, then � can be
represented by �� and the bit ���.

The method of recovering �� from �� and ��� is as follows:

a) Compute the field element � = ��
3 + ��� + � in ��;

23

b) Compute the square root � of � in �� (referring to Annex C.1.4). If non-square root exists, then
report an error;

c) If the rightmost bit of � is equal to ���, then set �� = �; otherwise set �� = � − �.

A.4.3 Compression and decompressionmethods for points on elliptic curve over ��� (where �
is an odd prime number and� ≥ �)

Let � = (��, ��) be a point on �(���): �2 = �3 + �� + � , then �� can be represented as
(��−1, ��−2, …, �1, �0); let ��� be the rightmost bit of ��, then � can be represented by �� and the bit ���.

The method of recovering �� from �� and ��� is as follows:

a) Compute the field element � = ��
3 + ��� + � in ��� ;

b) Compute the square root � of � in ��� (referring to Annex C.1.4). If non-square root exists, then
report an error;

If in the representation (��−1, ��−2, …, �1, �0) of �, the rightmost bit of �0 is equal to ��� , then set �� =
�; otherwise set �� = (��−1

' , ��−2
' , …, �1

' , �0
'), where ��

' = � − �� ∈ ��, � = 0,1, …, � − 1.

24

Annex B
(informative)

Computation of bilinear pairings over elliptic curves

B.1 Overview

Let an elliptic curve over finite field be �(��). If #�(��) = �� × �, � is prime, �� is the cofactor, then the
smallest positive integer � satisfying � | �� − 1 is known as the elliptic curve’s embedding degree
relative to �. If � is an � order subgroup of �(��), the embedding degree of� is � as well.

Let ��� be an algebraic closure of finite field ��, and �[�] be the set of all points of order � in E(���).

B.2 Miller's algorithm

Let the equation of elliptic curves �(���) over ��� be �2 = �3 + �� + � , and define the straight line
passing through the points � and � on �(���) as ��,�: �(���) → ��� . If the equation of the line passing
through the points � and � is �� + �� + � = 0, then set function ��,�(�) = ��� + ��� + � , where � =
(��, ��). When � = �, ��,� is defined as the tangent line passing through the point �; if either � or � is
the point at infinity, ��,� is a straight line perpendicular to the � -axis and passing through the other
point. Generally, ��,−� is abbreviated as ��.

Let � = (��, ��), � = (��, ��), � = (��, ��), �1 = (3��
2 + �)/(2��), �2 = (��–��)/(��–��), then there

should have the following properties:
a) ��,� � = ��,� � = ��,� � = 1;
b) ��,� � = �1 �� − �� − �� + ��, � ≠ �;
�) ��,� � = �2 �� − �� − �� + ��, � ≠ �, � ≠± �;
d) ��,−� � = �� − ��, � ≠ �.

Miller's algorithm is an efficient algorithm to compute bilinear pairings.

Miller's algorithm

Input: a curve �, two points � and � on �, and an integer �.

Output: ��,�(�).

a) The binary representation of � is ��…�1�0, and the most significant bit �� is 1;

b) Set � = 1, and � = �;

c) For � = � − 1 to 0:

�.1) Compute � = �2 ⋅ ��,�(�)/�2�(�), � = [2]�;

�.2) If �� = 1, let � = � ⋅ ��,� � /��+� � , � = � + �.

d) Output �.

Generally, ��, �(�) is known as the Miller function.

25

B.3 Computation of theWeil pairing

Let � be an elliptic curve over �� , and � be a positive integer coprime to �. Suppose �� is the set of �th
unit roots, and � is the embedding degree relative to �, that is � | �� − 1, then �� ⊂ ��� .

Let �1 = �[�] , �2 = �[�] , �� = �� , then the Weil pairing is a bilinear mapping from �1 × �2 to �� ,
which is denoted as ��.

Let � ∈ �1 , � ∈ �2 , if � = � or � = � , then �� �, � = 1 ; if � ≠ � and � ≠ � , for randomly selected
points � ∈ �1 and � ∈ �2, which are not the point at infinity, such that neither � + � nor � equal to � or
� + �, then theWeil pairing is

�� �, � =
��+�,� � + � ��,� � ��,� � + � ��+�,� �
��,� � + � ��+�,� � ��+�,� � + � ��,� � .

��+�,� � + � , ��,� � + � , ��+�,� � , ��,� � , ��+�,� � + � , ��+�,� � , ��,� � + � , ��,� � can be
computed using the Miller algorithm. If the denominator happens to be 0 during computation, replace
the point � or � and recompute.

B.4 Computation of the Tate pairing

Let � be an elliptic curve over �� , � be a positive integer coprime to � , and � the embedding degree

relative to �. Let � be the � order on �(���)[�], and 〈�〉 is the cyclic group generated by �. ���
∗ �

is the

set of the �th power of each element in ���
∗ , ���

∗ �
is a subgroup of ���

∗ , the quotient group of ���
∗ about

���
∗ �

is written as ���
∗ / ���

∗ �
.

Let�1 = �(��)[�], �2 = 〈�〉,�� = ���
∗ / ���

∗ �
, then the Tate pairing is a bilinear mapping from�1 × �2

to��, written as ��.

Let � ∈ �1, � ∈ �2, if � = � or � = �, then �� = 1; if � ≠ � and � ≠ �, for randomly selected point � ∈
� ��� which is not the point at infinity, such that � ≠ �, � ≠ � + �, � ≠− �, then the Tate pairing is

�� �, � =
��,� � + �

��,� � .

��,� � + � and ��,� � can be computed using the Miller algorithm. During the computation, if the
denominator happens to be 0, replace the point � and re-compute.

In practice, the reduced Tate pairings as follows is generally used:

�� �, � = ��,� �
��−1

� , � ≠ �,
1, � = �.

The computation amount would be cut in half if the reduced Tate pairings are applied instead of the
general Tate pairings. If the embedding degree � relative to � is an even number, then the computation
method of reduced Tate pairings could be further optimized. Algorithm 1 describes the common
methods applied to reduce Tate pairings, Algorithm 2, 3 and 4 deal with circumstances when � = 2�.

Algorithm 1

26

Input: an integer � coprime to �, � ∈ �(��)[�], � ∈ �(���)[�].

Output: ��(�, �).

a) The binary representation of � is ��…�1�0, and the most significant bit �� is 1;

b) Set � = 1, � = �;

c) For � = � − 1 to 0:

c.1) Compute � = �2 ⋅ ��,�(�)/�2�(�), � = [2]�;

c.2) If �� = 1, let � = � ⋅ ��,� � /��+� � , � = � + �.

d) Compute � = �(��−1)/�.

e) Output �.

Algorithm 2

Input: an integer � coprime to �, � ∈ �(��)[�], � ∈ �(���)[�].

Output: ��(�, �).

a) The binary representation of � is ��…�1�0, and the most significant bit �� is 1;

b) Set � = 1, � = �;

c) For � = � − 1 to 0:

c.1) Compute � = �2 ⋅ ��,�(�)/�2�(�), � = [2]�;

c.2) If �� = 1, let � = � ⋅ ��,� � /��+� � , � = � + �.

d) Compute � = ���−1;

e) Compute � = �(��+1)/�;

f) Output �.

Algorithm 3

If ��� (� = 2�) is seen as the quadratic extension of ��� , then the elements in ��� can be represented as
� = �0 + ��1 , where �0, �1 ∈ ��� , then the conjugate of � is �� = �0 − ��1 , and in this case, the
inverse in algorithm 1 can be replaced with conjugate.

Input: an integer � coprime to �, � ∈ �(��)[�], � ∈ �(���)[�].

Output: ��(�, �).

a) The binary representation of � is ��…�1�0, and the most significant bit �� is 1;

27

b) Set � = 1, � = �;

c) For � = � − 1 to 0:

c.1) Compute � = �2 ⋅ ��,�(�) ⋅ ��2�(�), � = [2]�;

c.2) If �� = 1, let � = � ⋅ ��,� � ⋅ ���+� � , � = � + �.

d) Compute � = ���−1;

e) Compute � = �(��+ 1)/�;

f) Output �.

Algorithm 4

When � is a prime greater than 3, then the point � ∈ �', where �' is the twisted curve of �. In this case,
the algorithm could be further optimized.

Input: � ∈ �(��)[�], � ∈ �'(���)[�], an integer �.

Output: ��(�, �).

a) The binary representation of � is ��…�1�0, and the most significant bit �� is 1;

b) Set � = 1, � = �;

c) For � = � − 1 to 0:

c.1) Compute � = �2 ⋅ ��,�(�), � = [2]�;

c.2) If �� = 1, let � = � ⋅ ��,� � , � = � + �.

d) Compute � = ���−1;

e) Compute � = �(��+ 1)/�;

f) Output �.

B.5 Computation of the Ate pairing

Let �� be the Frobenius endomorphism, ��: � → �, �, � ↦ ��, �� ; let [�] be the mapping: � → �, � ↦
[�]� ; [1] unit map; the dual of �� is ��

' , satisfying �� ⋅ ��
' = [�] ; Ker() refers to the kernel of the

mapping; let the Frobenius trace of elliptic curve �(��) be �, and � = � − 1.

The computation methods for Ate pairings under various structures are given below.

B.5.1 Computation of the Ate pairing over�� × ��

Let �1 = �[�] ∩ Ker(�� − [1]), �2 = �[�] ∩ Ker(�� − [�]), � ∈ �1 , � ∈ �2 . Define the Ate pairings over
�2 × �1 as:

28

Ate: �2 × �1 → ���
∗ / ���

∗ �

�, � ↦ ��,� � (��−1)/�.

The computation method for Ate pairings on�2 × �1 is given below.

Input:�1 = �[�] ∩ Ker(�� − [1]),�2 = �[�] ∩ Ker(�� − [�]), � ∈ �1, � ∈ �2, an integer � = � − 1.

Output: Ate(�, �).

a) The binary representation of � is ��…�1�0, and the most significant bit �� is 1;

b) Set � = 1, � = �;

c) For � = � − 1 to 0:

c.1) Compute � = �2 ⋅ ��,�(�), � = [2]�;

c.2) If �� = 1, compute � = � ⋅ ��,� � /��+�(�), � = � + �.

d) Compute � = �(��− 1)/�;

e) Output �.

B.5.2 Computation of the Ate pairing over�� × ��

For supersingular elliptic curves, the definition and technique of Ate pairings mentioned above can be
directly applied; whereas for ordinary curves, �2 needs to be transformed to twisted curve before Ate
pairings could be defined.

B5.2.1 Ate pairings on supersingular elliptic curves

Let � be a supersingular elliptic curve defined over ��,

Let �1 = �[�] ∩ Ker(��
' − [�]), �2 = �[�] ∩ Ker(��

' − [1]), �� = ���
∗ / ���

∗ �
, � ∈ �1 , � ∈ �2 . Define the

Ate pairings over�1 × �2 as:

Ate: �1 × �2 → ���
∗ / ���

∗ �

�, � ↦ ��,� � (��−1)/�.

The computation method for Ate pairings on�1 × �2 is given below.

Input:�1 = �[�] ∩ Ker(��
' − [�]),�2 = �[�] ∩ Ker(��

' − [1]), � ∈ �1, � ∈ �2, an integer � = � − 1.

Output: ���(�, �).

a) The binary representation of � is ��…�1�0, and the most significant bit �� is 1;

b) Set � = 1, � = �;

c) For � = � − 1 to 0:

29

c.1) Compute � = �2 ⋅ ��,�(�), � = [2]�;

c.2) If �� = 1, compute � = � ⋅ ��,� � /��+�(�), � = � + �.

d) Compute � = �(��− 1)/�;

e) Output �.

B.5.2.2 Ate pairings on ordinary curves

For ordinary curves, there exists an integer � , making ��
' �

the automorphism on �1 , thus, twisted
curve theory could be applied to establish the relationship between ���(�, �) and ��,��(�), where � =
� + 1, and � is trace.

Let � be an elliptic curve defined over �� , �' be the �th twisted curve of �, and � its embedding degree,
� = gcd (�, �), � = �/�, �� be the�th primitive unit. The value of � has three cases when � ≥ 5:

a) � = 6 , � = ��
−6 , �': �2 = �3 + �� , �6: �' → �: �, � ↦ (�−1/3�, �−1/2�) , �1 = � � ∩ Ker(�� − 1) ,

�2 = �' � ∩ Ker(�−1/6 ��
� − 1).

b) � = 4 , � = ��
−4 , �': �2 = �3 + ��� , �4: �' → �: �, � ↦ (�−1/2�, �−3/4�) , �1 = � � ∩ Ker(�� − 1) ,

�2 = �' � ∩ Ker(�−1/4 ��
� − 1).

c) � = 2, � = ��
−2 , �': �2 = �3 + �2�� + �3�, �2: �' → �: �, � ↦ (�−1�, �−3/2�), �1 = � � ∩ Ker(�� −

1),�2 = �' � ∩ Ker(�−1/2 ��
� − 1).

Let � ∈ �1, � ∈ �2. The Ate pairings on�1 × �2 are defined as:

���: �1 × �2 → ���
∗ / ���

∗ �

�, � ↦ ��,�� � (��−1)/�.

The computation method is given below.

Input:�1,�2, � ∈ �1, � ∈ �2, an integer � = � − 1.

Output: ���(�, �).

a) Compute � = ��;

b) The binary representation of � is ��…�1�0, and the most significant bit �� is 1;

c) Set � = 1, � = �;

d) For � = � − 1 to 0:

d.1) Compute � = �2 ⋅ ��,�(�), � = [2]�;

d.2) If �� = 1, compute � = � ⋅ ��,� � /��+�(�), � = � + �.

e) Compute � = �(��− 1)/�;

30

f) Output �.

If the elliptic curve on which the Ate pairings defined on �1 × �2 is based is supersingular, then it is
easy to see that Ate pairings are more efficient than Tate pairings. However, for ordinary curves, Ate
pairings are more computationally efficient than Tate pairings only when |��| ≤ � , therefore, Ate
pairings are recommended only when the value of � is relatively small.

B.6 Computation of the R-ate pairing

B.6.1 Definition of the R-ate pairing

The "R" in R-ate can be seen as the ratio of two pairings, and it could also be regarded as a certain fixed
power of Tate pairings.

Let �, �, �, � ∈ �, � = �� + �. The Miller function ��,� � has the following features:

��,� � = ��,��+� � = ��,�� � ⋅ ��,� � ⋅ � �� �, � � � /� � � �

= ��,�
� (�) ⋅ � � �,�(�) ⋅ ��,�(�) ⋅

� �� �, � � �
� � � �

The R-ate pairing is defined as:

��,� �, � = � � �,� � ⋅ ��,� � ⋅
� �� �, � � �

� � � �

(��−1)/�

=
��,� �
��,�

� �

(��−1)/�

.

If ��,�(�) and ��,�(�) are non-degenerate Miller functions, then ��,� �, � is a non-degenerate pairing.

Let �1, �2, �1, �2 ∈ �, satisfying

��
�1 �, � = ��,� � �1⋅(��−1)/�

,

��
�2 �, � = ��,� � �2⋅(��−1)/�

.

Let� = lcm(�1, �2),� = �/�1 ⋅ �1 − � �/�2 ⋅ �2.

For the sake of non-degeneracy,� is not divisible by �. We have:

��
� �, � = ��

�
�1

�1−� �
�2

�2
�, � =

�� �, � �1
�
�1

�� �, � ��2
�
�2

=
��,� �
��,� � �

�⋅(��−1)/�

.

It is easy to see that ��
� �, � = ��,� �, � �.

Generally, a non-degenerate pairing cannot be provided by any integer pairing (�, �) , and (�, �) has
four cases as follows:

a) �, � = ��, �
b) �, � = (�, �1)
c) �, � = (��, ��)
d) �, � = (�, ��).

where �� ≡ �� (mod �), � ∈ �, and 0 < � < �.

31

Case 1: �, � = ��, � , because � = �� + �, that is �� = �� + �, therefore, � ≡ �� (mod �), and

��,�� �
��,�

� �

(��−1)/�

= ��,� �, � = � � �,� � ��,� �
� �� �, � � �

� �� � �

(��−1)/�

Because � ≡ �� (mod �), � �� �, � � � = � �� � � . Furthermore, � � �,� � = 1. Hence

��,� �, � = ��,�� � (��−1)/�. (1)

Case 2: �, � = �, �1 , that is � = ��1 + �. Then

��,� �
��,�1

� �

(��−1)/�

= ��,� �, � = � �1 �,� � ��,� �
� ��1 �, � � �

� � � �

(��−1)/�

.

Since � �1 �,� � = ��,�
� � , therefore

��,� �, � = ��,�
� � ��,� �

� ��1 �, � � �
� � � �

(��−1)/�

. (2)

Case 3: �, � = (��, ��), that is �� = ��� + �, then

��,�� �
��,��

� �

(��−1)/�

= ��,� �, � = � �� �,� � ��,� �
� ��� �, � � �

� �� � �

(��−1)/�

.

Similarly, since � �� �,� � = ��,�
�� � , therefore

��,� �, � = ��,�
�� � ��,� �

� ��� �, � � �
� �� � �

(��−1)/�

. (3)

Case 4: �, � = (�, ��), that is � = ��� + �, therefore

��,� �
��,��

� �

(��−1)/�

= ��,� �, � = � �� �,� � ��,� �
� ��� �, � � �

� � � �

(��−1)/�

.

Similarly, from � �� �,� � = ��,�
�� � , we have

��,� �, � = ��,�
�� � ��,� �

� ��� �, � � �
� � � �

(��−1)/�

. (4)

The R-ate pairing of case 1 is also known as ���� pairing. Pairing computation of cases 2, 3 and 4 require
two Miller loops of length log � and log � respectively. Case 2 and 4 can only alter one parameter � to
obtain efficient pairings, while case 3 can alter two parameters. Therefore, the R-ate pairings of case 3
are usually chosen, then �, � = (��, ��).

32

In order to reduce the degree of the Miller loop, various � and � can be tried to minimize the integers �
and �, thus, the degree of the Miller loop could be reduced to log (�1/Φ(�)).

B.6.2 Computation of the R-ate pairing on BN curves

Barreto and Naehrig put forward a method to construct ordinary curves over prime field �� suitable for
pairings, and curves constructed via this method are called BN curves. The equation of the BN curves is
�: �2 = �3 + �, where � ≠ 0. The embedding degree � = 12, the curve order � is a prime. The base field
characteristic is �, the curve order is �, and the trace �� of the Frobenius mapping can be obtained by the
parameter �:

�(�) = 36�4 + 36�3 + 24�2 + 6� + 1
�(�) = 36�4 + 36�3 + 18�2 + 6� + 1

�� � = 6�2 + 1

where � ∈ �, such that both � = �(�) and � = �(�) are primes, and in order to achieve a certain security
level, �must be large enough, which is at least 63 bits.

There exists 6th order twisted curves for BN curves over ��2: �': �2 = �3 + ��, where � ∈ ��2 , which is
neither a square root nor cubic root in ��2 , such that � | #�'(��2). The points in �2 can be represented
by the points on the twisted curve �' , �6: �' → �: �, � ↦ �−1/3�, �−1/2� . Thus, the computation of
pairings is restricted on the point � on �(��) and the point �' on �'(��2).

Frobenius automorphism is ��, and ��: � → �, �� �, � = (��, ��), ��2: � → �, ��2 �, � = (��2, ��2).

The computation of R-ate pairing is as follows.

Input: � ∈ �(��)[�], � ∈ �'(��2)[�], � = 6� + 2.

Output: ��(�, �).

a) Suppose � = ∑
�−1

�=0
��2�, ��−1 = 1;

b) Set � = �, � = 1;

c) For � = � − 2 to 0:

c.1) Compute � = �2 ⋅ ��,�(�), � = [2]�;

c.2) If �� = 1, compute � = � ⋅ ��,� � , � = � + �;

d) Compute �1 = ��(�), �2 = ��2 � ;

e) Compute � = � ⋅ ��,�1 � , � = � + �1;

f) Compute � = � ⋅ ��,−�2 � , � = � − �2;

g) Compute � = �(�12− 1)/�;

h) Output �.

33

For more computation methods for Weil pairings, Tate pairings, Ate pairings and R-ate pairings, please
refer to (Barreto P, Lynn, Scott M. 2003), (Barreto P, Galbraith S, et al. 2004), (Eisentrager K, Lauter K,
Montgomery P. 2003), (Galbraith S, Harrison K, Soldera D. 2002), (Kobayashi T, Aoki K, Imai H. 2006),
(Miller V. 2004), (Scott M. 2005), (Scott M. 2006) and (Scott M, Barreto P. 2004).

B.7 Pairing-friendly elliptic curves

It is relatively easy to construct bilinear pairings for supersingular curves, yet for curves randomly
generated, it is difficult to construct computable pairings. Therefore, when considering ordinary curves,
ones with a structure suitable for pairings should be selected.

Assume that � is an elliptic curve defined over ��, if the three conditions listed below are satisfied, then
� is a curve suitable for pairings:

a) #�(��) has a prime factor � no less than �;

b) The embedding degree of � relative to � is less than log2 (�)/8;

c) The largest prime factor of � ± 1 is of the same order as �.

Below are the steps to construct elliptic curves suitable for pairings:

Step 1: select �, compute integer �, � and �, so that there exists an elliptic curve �(��) whose trace is �,
and the curve has a subgroup of prime order � and its embedding degree is �.

Step 2: use complex multiplication method to compute the equation parameter of this curve over ��.

For methods to construct elliptic curves suitable for pairings, please refer to (Atkin A, Morain F. 1993),
(Barreto P, Lynn B, Scott M. 2002), (Barreto P, Lynn B, Scott M. 2003), (Barreto P, Naehrig M. 2005),
(Brezing F, Weng A. 2005), (Duan P, Cui S, Wah Chan C. 2005), (Dupont R, Enge A, Morain F. 2005),
(Freeman D. 2006), (Freeman D, Scott M, Tesk E. 2006), (Lay G, Zimmer H. 1994), (Milne J. 2006.),
(Miyaji A, Nakabayashi M, Takano S. 2001), (Scott M. 2006) and (Thuen Ø. 2006).

34

Annex C
(informative)

Number-theoretic algorithm

C.1 Calculation over finite fields

C.1.1 Exponentiation operation in finite fields

Let � be a positive integer, � be an element of field �� , then the exponentiation is the process of
computing ��. By the binary method described below, exponentiation can be performed efficiently.

Input: a positive integer �, a field �� and a field element �.

Output: ��.

a) Set � = � mod (� − 1), if � = 0, then output 1;

b) The binary representation of � is ����−1…�1�0, and the most significant bit �� is 1;

c) Set � = �;

d) For � = � − 1 to 0:

d.1) Set � = �2;

d.2) If �� = 1, set � = � ⋅ �;

e) Output �.

For other accelerated algorithms, please refer to (Brickell et al. 1993), (Knuth 1981).

C.1.2 Inverse operation in finite fields

Let � be a nonzero element in the field �� , then the inverse element �−1 is the field element � satisfying
� ⋅ � = 1. Since � = ��−2, the inverse operation can be implemented using the exponentiation operation.
Note that if � is prime and � is an integer satisfying 1 ≤ � ≤ � − 1 , then �−1 is the integer � , 1 ≤ � ≤
� − 1, and � ⋅ � ≡ 1 (mod �).

Input: a field �� and a nonzero field element � in ��.

Output: the inverse element �−1.

a) Compute � = ��−2 (see C.1.1);

b) Output �.

A more efficient method is the extended Euclidean algorithm; please refer to (Knuth D. 1981).

C.1.3 Generation of Lucas sequences

Let � and � be two nonzero integers, then the Lucas sequences �� and �� of � and � are defined as
follows:

35

�0 = 0, �1 = 1, if � ≥ 2, �� = � ⋅ ��−1–� ⋅ ��−2;

�0 = 2, �1 = �, if � ≥ 2, �� = � ⋅ ��−1–� ⋅ ��−2.

The recurrences above are suitable for calculating the �� and �� for small �'s. For large integers �, the
following algorithm is efficient in the calculation of �� mod � and �� mod �.

Input: an odd prime �, integers � and �, a positive integer �.

Output: �� mod � and �� mod �.

a) Set ∆ = �2 –4�;

b) The binary representation of � is ����−1…�1�0, and the most significant bit �� is 1;

c) Set� = 1, � = �;

d) For � = � − 1 to 0:

d.1) Set (�, �) = ((� ⋅ �) mod �, (�2 + ∆ ⋅ �2)/2) mod �);

d.2) If �� = 1, set (�, �) = (((� ⋅ � + �)/2) mod �, (� ⋅ � + ∆ ⋅ �)/2) mod �);

e) Output � and �.

C.1.4 Solving square root

C.1.4.1 Solving square root on ��

Let � be an odd prime, � be an integer satisfying 0 ≤ � < � , then the square root (mod �) of � is the
integer �, where 0 ≤ � < �, such that �2 = � (mod �).

If � = 0 , then there is only one square root, � = 0 ; if � ≠ 0 , then there are zero or two square roots
(mod �), and if � is one root, then the other root is � − �.

The following algorithm can determine whether the square roots of � exist. If it exists, then the
algorithmwill compute one root.

Input: an odd prime �, an integer �, 0 < � < �.

Output: if the square roots exist, output a square root mod �; otherwise, output "non-square root".

Algorithm 1: For � ≡ 3 (mod 4), there is a positive integer � satisfying � = 4� + 3.

a) Compute � = ��+1 mod � (see C.1.1);

b) Compute � = �2 mod �;

c) If � = �, then output �; otherwise, output "non-square root".

Algorithm 2: For � ≡ 5 (mod 8), there is a positive integer � satisfying � = 8� + 5.

a) Compute � = �2�+1 mod � (see C.1.1);

36

b) If � ≡ 1 (mod �), compute � = ��+1 mod �, output � and stop the algorithm;

c) If � ≡− 1 (mod �), compute � = 2� ⋅ 4� � mod �, output � and stop the algorithm;

d) Output "non-square root".

Algorithm 3: For � ≡ 1 (mod 8), there is a positive integer � satisfying � = 8� + 1.

a) Set � = �;

b) Generate the random value �, 0 < � < �;

c) Compute the Lucas sequences (see C.1.3): � = �4�+1 mod � and � = �4�+1 mod �;

d) If �2 ≡ 4� (mod �), then output � = (�/2) mod � and stop the algorithm;

e) If � mod � ≠ 1 and � mod � ≠ � − 1, output "non-square root" and stop the algorithm;

f) Go to b).

C.1.4.2 Solving square root on ���

Let � be an odd prime, for a quadratic field extension ��2 , let the reduced polynomial be � � = �2 −
�, � ∈ ��, then element � of ��2 can be represented as � + ��, �, � ∈ ��, then the square root of � is:

� = � + �� =± �+ �2−��2

2
+ ��

2 �+ �2−��2
2

, or± �− �2−��2

2
+ ��

2 �− �2−��2
2

.

The algorithm below can determine if � has square roots, if yes, calculate one of the roots.

Input: � = � + �� ∈ ��2 , � ≠ 0, an odd prime number �.

Output: if square roots of � exists, output one square root � , otherwise output "The square root does
not exist".

a) Compute � = �2 − ��2;

b) Compute the square root of � mod � (see C.1.4.1), if the square root of � mod � exists, denoted by
��, the equality��2 = � mod � , � = 1,2 holds, go to c); otherwise, output "non-square root" and stop.

c) For � = 1 to 2:

c.1) Compute V=(a+��)/2;

c.2) Compute the square root of � mod � (see C.1.4.1). If they exist, choose one square root �
randomly, then the equality �2 = � mod � holds, go to d); if the square roots of � mod � do not exist
and � = 2, output "non-square root", then stop.

d) Compute �1 = �
2�

mod �, let �0 = �;

e) Output � = �0 + �1�.

37

C.1.4.3 Solving square root on ���

C.1.4.3.1 Checking square elements on ���

Let � be an odd prime number, � > 2, � a nonzero element on ��� , the algorithm below can be used to
check if � is a square element.

Input: an element � of the field.

Output: if � is a square element then output "square", else output "non-square".

a) Compute � = �(��−1)/2 (see C.1.1);

b) If � = 1, output "square";

�) If � =− 1, output "non-square".

C.1.4.3.2 Solving square root on ���

Let � be an odd prime number,� ≥ 2.

Input: an element � of the field.

Output: if � is a square element, output its square root �; otherwise, output "non-square root"

a) Randomly choose a non-square element �;

b) Compute �� − 1 = 2� × �, � is an odd integer.

c) Compute � = ��.

d) Compute � = ��.

e) Compute � = �(�+1)/2.

f) If �2�−1 ≠ 1, then output "non-square root" and stop.

g) As long as � ≠ 1:

g.1)Let � be the smallest positive integer such that �2� = 1;

g.2)Compute � = � × �2�−�;

g.3)Compute � = � × �2�−�−1;

h) Output �.

C.1.5 Probabilistic primality testing

Let � be a large positive integer, the following probabilistic algorithm (Miller-Rabin test) can decide
whether � is a prime or a composite.

Input: a large odd � and a large positive integer �.

38

Output: "probable prime" or "composite".

a) Compute � and the odd� satisfying � − 1 = 2� ⋅ �;

b) For � = 1 to �:

b.1) Select a random value � in the interval [2, � − 1];

b.2) Set � = �� mod �;

b.3) If � = 1 or � − 1, go to b.6);

b.4) For � = 1 to � − 1:

b.4.1) Set � = �2 mod �;

b.4.2) If � = � − 1, go to b.6);

b.4.3) If � = 1, output "composite" and stop the algorithm;

b.4.4) The next �;

b.5) Output "composite" and stop the algorithm;

b.6) The next �;

c) Output "probable prime".

If the algorithm outputs "composite", then � is a composite. If the algorithm outputs "probably prime",
then the probability of a composite � is less than 2−2� . Thus, by selecting a � large enough, the
probability is negligible.

C.2 Polynomials over finite fields

C.2.1 Greatest common divisor

If �(�) ≠ 0 and �(�) ≠ 0 are two polynomials whose coefficients are in the field �� , there is only one
monic polynomial �(�) (its coefficients are also in the field ��) with the largest degree, and it divides
�(�) and �(�) simultaneously. The polynomial �(�) is called the greatest common divisor of �(�) and
�(�), which is denoted by gcd(�(�), �(�)). The following algorithm (the Euclidean algorithm) is used to
compute the greatest common divisor of two polynomials.

Input: a finite field ��, and two nonzero polynomials �(�) ≠ 0 and �(�) ≠ 0 in ��.

Output: �(�) = gcd(�(�), �(�)).

a) Set �(�) = �(�), �(�) = �(�);

b) When �(�) ≠ 0, execute the loop:

b.1) Set � � = � � mod �(�);

b.2) Set �(�) = �(�);

39

b.3) Set �(�) = �(�);

c) Let � be the coefficient of the first term in �(�) and output �−1�(�).

C.2.2 Checking irreducibility of polynomial over ��

Let �(�) be the polynomial on ��, the following algorithm can be used to check the irreducibility of �(�)
efficiently.

Input: the monic polynomial �(�) and a prime �.

Output: if �(�) is irreducible over ��, output “yes”; otherwise, output “no”.

a) Set �(�) = �,� = deg(�(�));

b) For � = 1 to �/2 :

b.1) Set � � = �� � mod �(�);

b.2) Set � � = gcd(� � , � � − �);

b.3) If �(�) ≠ 1, output “no” and stop the algorithm;

c) Output “yes”.

C.3 Elliptic curve algorithms

C.3.1 Finding points on elliptic curves

Given an elliptic curve over finite field, the following algorithm can be used to find a point which is not
the zero point on the elliptic curve efficiently.

C.3.1.1 Finding points on �(��).

Input: a prime �, the parameters � and � of an elliptic curve � over ��.

Output: a nonzero point on �.

a) Select a random integer �, 0 ≤ � < �;

b) Set � = (�3 + �� + �) mod �;

c) If � = 0, then output (�, 0) and stop the algorithm;

d) Compute the square root of � mod � (see C.1.4.1);

e) If d) outputs "non-square root", then go to a);

f) Output (�, �).

C.3.1.2 Finding points on � ��� (� ≥ �)

Input: finite field ��� (� is an odd prime), the parameters � and � of an elliptic curve � over ���

40

Output: a nonzero point on �.

a) Select a random element � in ���.

b) Compute � = (�3 + �� + �) over ���.

c) If � = 0, then output (�, 0) and stop the algorithm.

d) Compute the square root of � over ���, denoted by � (see C.1.4.3);

e) If the output of d) is "non-square root", then go to a);

f) Output (�, �).

C.3.2 Finding �-order points on elliptic curves

This algorithm can be used to compute the generator of �-torsion subgroup of elliptic curves.

Input: the parameters � and � of an elliptic curve � over �� , the order of the curve #�(��) = � = � ⋅ �,
where � is a prime number.

Output: an �-order point on �(��).

a) Use the method of C.3.1 to select a point � on the curve randomly.

b) Compute � = [�]�;

c) If � = � then go to a);

d) Output �.

C.3.3 Finding �-torsion points on twisted elliptic curves

Let �2 = �3 + �� + � be the function of the elliptic curve � over ��� , the order #�(���) = �� + 1 − � .
Let the equation of its twisted curve �' be �2 = �3 + �2 ⋅ �� + �3 ⋅ �, where � is a non-square element of
��� , #�'(���) = �� + 1 + �.

Input: the parameters �, �, � of the twisted curve �'(���) of an elliptic curve �(���) , the order
#� ��� = �' = � ⋅ �, where � is prime.

Output: an �-order point on �'(���).

a) Use the method of C.3.1 to select a point � on �'(���) randomly.

b) Compute � = [�]�;

c) If � = � then go to a); else � is an �-torsion point.

d) Output �.

41

Bibliography

[1] Abdalla M, Lange T, Eds. 2012. Pairing-Based Cryptography - Pairing 2012. Proceedings (2012), vol.
7708 of Lecture Notes in Computer Science, Springer-Verlag

[2] Atkin A, Morain F. 1993. Elliptic Curves and Primality Proving, Mathematics of Computation
61(203): 29-68

[3] Barbulescu R, Gaudry P, Joux A, Thome E. 2014. A Heuristic Quasi-polynomial Algorithm for
Discrete Logarithm in Finite Fields of Small Characteristic. In P. Q. Nguyen and E. Oswald, editors,
Advances in Cryptology: Proceedings of EUROCRYPT '14, volume 8441 of LNCS, Springer-Verlag, 1-
16

[4] Barreto P, Galbraith S, et al. 2004. Efficient Pairing Computation on Supersingular Abelian Varieties.
Cryptology ePrint Archive, Report 2004/375

[5] Barreto P, Kim H, Lynn B, et al.2002. Efficient Algorithms for Pairing-based Cryptosystems,
Proceedings of CRYPTO 2002, LNCS 2442. Springer-Verlag, 354-369

[6] Barreto P, Lynn B, Scott M. 2002. Constructing Elliptic Curves with Prescribed Embedding Degrees.
In: Security in Communication Networks - SCN'2002, LNCS 2576. Springer-Verlag, 263-273

[7] Barreto P, Lynn B, Scott M. 2003. On the Selection of Pairing-friendly Groups. In: Selected Areas in
Cryptography - SAC'2003, LNCS 3006. Ottawa, Canada: Springer-Verlag, 17-25

[8] Barreto P, Naehrig M. 2005. Pairing-friendly Elliptic Curves of Prime Order. Cryptology ePrint
Archive, Report 2005/133

[9] Boneh D, Franklin M. 2001. Identity Based Encryption from the Weil-pairing, Proceedings of
CRYPTO 2001, LNCS 2139. Springer-Verlag, 213-229

[10] Brezing F, Weng A. 2005. Elliptic Curves Sutable for Pairing Based Cryptography, Designs, Codes
and Cryptography, 37: 133-141

[11] Brickell E, Gordon D, Mccurley K, et al. 1993. Fast Exponentiation with Precomputation. In:
Advances in Cryptology - EUROCRYPT’92, LNCS 658. Berlin: Springer-Verlag, 200-207

[12] Cao Zhenfu, Zhang Fanggou, Eds. 2013. Pairing-Based Cryptography - Pairing 2013. Proceedings
(2013), vol. 8365 of Lecture Notes in Computer Science, Springer-Verlag

[13] Cha J C, Cheon J H. 2002. An Identity-based Signature from Gap Diffie-Hellman Groups, Proceedings
of PKC 2002, LNCS 2567. Springer-Verlag, 18-30

[14] Cheng Qi, Wan Daqing and Zhuang Jincheng. 2014. Traps to the BGJT-Algorithm for Discrete
Logarithms. ePrint 2014

[15] Cheon, J. H. 2006. Security Analysis of the Strong Diffie-hellman Problem. In EUROCRYPT (2006), S.
Vaudenay, Ed., vol. 4004 of Lecture Notes in Computer Science, Springer-Verlag, 1-11

[16] Duan P, Cui S, Wah Chan C. 2005. Special Polynomial Families for Generating More Suitable Elliptic
Curves for Pairing-based Cryptosystems. Cryptology ePrint Archive, Report 2005/342

42

[17] Dupont R, Enge A, Morain F. 2005. Building Curves with Arbitrary Small MOV Degree over Finite
Prime Fields, Journal of Cryptology, 18(2): 79-89

[18] Eisentrager K, Lauter K, Montgomery P. 2003. Fast Elliptic Curve Arithmetic and Improved Weil-
pairing Evaluation. In: Topics in Cryptology, CT-RSA03, LNCS 2612. Springer-Verlag, 343-354

[19] Freeman D. 2006. Constructing Pairing-friendly Elliptic Curves with Embedding Degree 10. In:
Algorithmic Number Theory Symposium - ANTS-VII, LNCS 4076. Springer-Verlag, 452-465

[20] Freeman D, Scott M, Teske E. 2006. A Taxonomy of Pairing-friendly Elliptic Curves, Cryptology
ePrint Archive Report 2006/372

[21] Frey G, Müller M, Rück H. 1999. The Tate-pairing and the Discrete Logarithm Applied to Elliptic
Curve Cryptosystems, IEEE Transactions on Information Theory, 45(5): 1717-1719

[22] Galbraith S. 2001. Supersingular Curves in Cryptography, Proceedings of Asiacrypt 2001, LNCS
2248. Springer-Verlag, 495-513

[23] Galbraith S, Harrison K, Soldera D. 2002. Implementing the Tate-pairing, Proceedings of ANTSV,
LNCS 2369. Springer-Verlag, 324-337

[24] Galbraith S , Paterson K, Eds. 2008. Pairing-Based Cryptography - Pairing 2008. Proceedings
(2008), vol. 5209 of Lecture Notes in Computer Science, Springer-Verlag

[25] Googlu F, Granger R, McGuire G, and Zumbrael J. 2013. On the Function Field Sieve and the Impact
of Higher Splitting Probabilities: Application to discrete logarithms in F21971. Cryptology ePrint
Archive, Report 2013/074

[26] Hess F, Smart N, Vercauteren F. 2006. The Eta-pairing Revisited. Cryptology ePrint Archive, Report
2006/110

[27] IEEE P1363: 2000 Standard for Public Key Cryptography

[28] ISO/IEC 15946-1: 2002 Information Technology—Security Techniques—Cryptographic
Techniques Based on Elliptic Curves— Part 1: General

[29] ISO/IEC 15946-2: 2002 Information Technology—Security Techniques—Cryptographic
Techniques Based on Elliptic Curves— Part 2: Digital Signatures

[30] ISO/IEC 15946-3: 2002 Information Technology—Security Techniques—Cryptographic
Techniques Based on Elliptic Curves— Part 3: Key Establishment

[31] ISO/IEC 15946-4: 2003 Information Technology—Security Techniques—Cryptographic
Techniques Based on Elliptic Curves— Part 4: Digital Signatures Giving Message Recovery

[32] ISO/IEC 14888-3: 2004 Information Technology—Security Techniques—Digital Signatures with
Appendix Part 3: Discrete Logarithm Based Mechanisms

[33] ITU-T Recommendation X.680 Information Technology—Abstract Syntax Notation One (ASN.1):
Specification of Basic Notation (eqv ISO/IEC 8824-1)

[34] ITU-T Recommendation X.681 Information Technology—Abstract Syntax Notation One (ASN.1):
Information Object Specification (eqv ISO/IEC 8824-2)

43

[35] ITU-T Recommendation X.682 Information Technology—Abstract Syntax Notation One (ASN.1):
Constraint Specification (eqv ISO/IEC 8824-3)

[36] ITU-T Recommendation X.683 Information Technology—Abstract Syntax Notation One (ASN.1):
Parametrization of ASN.1 Specifications (eqv ISO/IEC 8824-4)

[37] ITU-T Recommendation X.690 Information Technology—ASN.1 Encoding Rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules
(DER) (eqv ISO/IEC 8825-1)

[38] ITU-T Recommendation X.691 Information Technology—ASN.1 Encoding Rules: Specification of
Packed Encoding Rules (PER) (eqv ISO/IEC 8825-2)

[39] Joux A. 2013. Faster Index Calculus for the Medium Prime Case Application to 1175-bit and 1425-
bit Finite Fields. In Advances in Cryptology EUROCRYPT 2013. Springer-Verlag, 177-193

[40] Joux A. 2013. A New Index Calculus Algorithmwith Complexity L(1/4 + o(1))in Very Small
characteristic. In Selected Areas in Cryptography-SAC 2013, volume 8282 of Lecture Notes in
Computer Science, Springer-Verlag, 355-382

[41] Joye M, Miyaji A, Otsuka A, Eds. 2010. Pairing-Based Cryptography - Pairing 2010. Proceedings
(2010), vol. 6487 of Lecture Notes in Computer Science, Springer-Verlag

[42] Knuth D. 1981. The Art of Computer Programming(Vol 2). 2nd ed. Reading(MA): Addison-Wesley

[43] Kobayashi T, Aoki K, Imai H. 2006. Efficient Algorithms for Tate-pairing. IEICE Trans.
Fundamentals, E89-A

[44] Koblitz N. 1987. Elliptic Curve Cryptosystems. Mathematics of Computation, 48:203-209

[45] Lauter K, Montgomery P, Naehrig M. 2010. An Analysis of Affine Coordinates for Pairing
Computation. Pairing-Based Cryptography - Pairing 2010. Proceedings (2010), vol. 6487 of Lecture
Notes in Computer Science, Springer-Verlag

[46] Lay G, Zimmer H. 1994. Constructing Elliptic Curves with Given Group Order over Large Finite
Fields, In: Algorithmic Number Theory Symposium-ANTS-1, LNCS 877. Springer-Verlag, 250-263
Menezes A. 1993. Elliptic Curve Public Key Cryptosystems. Boston: Kluwer Academic Publishers

[47] Lidl R, Niederreiter H. 1983. Finite Fields. Reading(MA): Addison-Wesley Menezes A, Okamoto T,
Vanstone S. 1993. Reducing Elliptic Curve Logarithms to Logarithms in a Finite Field. IEEE
Transactions on Information Theory, 39: 1639-1646

[48]Miller V. 2004. The Weil-pairing and its Efficient Calculation, Journal of Cryptology, 17:235-261

[49]Milne J. 2006. Complex Multiplication, http://www.jmilne.org/math

[50]Miyaji A, Nakabayashi M, Takano S. 2001. New Explicit Conditions of Elliptic Curve Traces for FR-
reduction, IEICE Transactions on Fundamentals, E84-A(5): 1234-1243

[51]Müller V. 1995. Counting the Number of Points on Elliptic Curves over Finite Fields of
Characteristic Greater than Three: [Doctorate Dissertation]. Saarlandes: University of Saarlandes

[52] Pollard J. 1978. Monte Carlo Methods for Index Computation mod p. Mathematics of Computation,
32: 918-924

44

[53] Schoof R. 1985. Elliptic Curves over Finite Fields and the Computation of Square Roots mod p.
Mathematics of Computation, 44(170): 483-494

[54] Scott M. 2005. Computing the Tate-pairing. In: CT-RSA, LNCS 3376. Springer-Verlag, 293- 304

[55] Scott M. 2006, Implementing Cryptographic Pairings, ECC 2006

[56] Scott M, Barreto P. 2004. Compressed Pairings. In: Advances in Cryptology Crypto' 2004, LNCS
3152. Springer-Verlag, 140-156

[57] Scott M, Barreto P. 2006. Generating More MNT Elliptic Curves, Designs, Codes and Cryptography,
38: 209-217

[58] Shacham H, Waters B, Eds. 2009. Pairing-Based Cryptography - Pairing 2009. Proceedings (2009),
vol. 5671 of Lecture Notes in Computer Science, Springer-Verlag

[59] Silverman J. 1986. The Arithmetic of Elliptic Curves. Berlin: Springer-Verlag, GTM 106

[60] Smart N. 1999. The Discrete Logarithm Problem on Elliptic Curves of Trace One. Journal of
Cryptology, 12(3): 193-196

[61] Takagi T, Okamoto T, Okamoto E, and Okamoto T, Eds. 2007. Pairing-Based Cryptography - Pairing
2007. Proceedings (2007), vol. 4575 of Lecture Notes in Computer Science, Springer-Verlag

[62] Thuen Ø. 2006. Constructing Elliptic Curves over Finite Fields Using Complex Multiplication,
Master of Science in Physics and Mathematics

[63] ANSI X9.63-2001 Public Key Cryptography for the Financial Services Industry: Key Agreement and
Key Transport Using Elliptic Curve Cryptography. American National Standards Institute

[64] ANSI X9.62-1999 Public Key Cryptography for the Financial Services Industry: The Elliptic Curve
Digital Signature Algorithm (ECDSA). American National Standards Institute

──────────

	Contents
	Foreword
	1Scope
	2Normative references
	3Terms and definitions
	3.1identity
	3.2master key
	3.3key generation center (KGC)

	4Symbols and abbreviations
	5Finite field and elliptic curve
	5.1Finite field
	5.1.1Overview
	5.1.2Prime field �𝑭�𝒑�
	5.1.3Finite field �𝑭��𝒒�𝒎��

	5.2Elliptic curves over finite field
	5.3Elliptic curve group
	5.4Scalar multiplication on elliptic curve
	5.5Verification of points in a subgroup of an ellipti
	5.6Discrete logarithm problem (DLP)
	5.6.1Discrete logarithm problem over finite field
	5.6.2Elliptic curve discrete logarithm problem (ECDLP)

	6Bilinear pairings and secure curves
	6.1Bilinear pairings
	6.2Security
	6.3Embedding degrees and secure curves

	7Data types and conversions
	7.1Data type
	7.2Data type conversions
	7.2.1Conversion relations between data types
	7.2.2Conversion of an integer to a byte string
	7.2.3Conversion of a byte string to an integer
	7.2.4Conversion of a bit string to a byte string
	7.2.5Conversion of a byte string to a bit string
	7.2.6Conversion of a field element to a byte string
	7.2.7Conversion of a byte string to a field element
	7.2.8Conversion of a point to a byte string
	7.2.9Conversion of a byte string to a point

	8System parameters and parameters verification
	8.1System parameters
	8.2Verification of the system parameters

	Annex A
	(informative)
	Elliptic curve basics
	A.1Finite field
	A.1.1Prime field �𝑭�𝒑�
	A.1.2Finite field �𝑭��𝒒�𝒎��
	A.1.3Elliptic curves over finite fields
	A.1.3.1Overview
	A.1.3.2Affine coordinate
	A.1.3.3Projective coordinate
	A.1.3.3.1Standard projective coordinate system
	A.1.3.3.2Jacobian projective coordinate system

	A.1.4Order of elliptic curves over finite field

	A.2Elliptic curve scalar multiplication
	A.3Discrete logarithm problem
	A.3.1Methods to solve the field discrete logarith
	A.3.2Methods to solve the elliptic curve discrete

	A.4Compression of points on elliptic curve
	A.4.1Overview
	A4.2Compression and decompression methods for poi
	A.4.3Compression and decompression methods for po

	Annex B
	(informative)
	Computation of bilinear pairings over elliptic c
	B.1Overview
	B.2Miller's algorithm

	B.3Computation of the Weil pairing
	B.4Computation of the Tate pairing

	B.5Computation of the Ate pairing
	B.5.1Computation of the Ate pairing over �𝔾�𝟐�×
	B.5.2Computation of the Ate pairing over �𝔾�𝟏�×
	B5.2.1 Ate pairings on supersingular elliptic curv
	B.5.2.2Ate pairings on ordinary curves

	B.6Computation of the R-ate pairing
	B.6.1Definition of the R-ate pairing
	B.6.2Computation of the R-ate pairing on BN curve

	B.7Pairing-friendly elliptic curves
	Annex C
	(informative)
	Number-theoretic algorithm
	C.1Calculation over finite fields
	C.1.1Exponentiation operation in finite fields
	C.1.2Inverse operation in finite fields
	C.1.3Generation of Lucas sequences
	C.1.4Solving square root
	C.1.4.1Solving square root on �𝑭�𝒒�
	C.1.4.2Solving square root on �𝑭��𝒒�𝟐��
	C.1.4.3Solving square root on �𝑭��𝒒�𝒎��
	C.1.4.3.1Checking square elements on �𝑭��𝒒�𝒎��
	C.1.4.3.2Solving square root on �𝑭��𝒒�𝒎��

	C.1.5Probabilistic primality testing

	C.2Polynomials over finite fields
	C.2.1Greatest common divisor
	C.2.2Checking irreducibility of polynomial over �

	C.3Elliptic curve algorithms
	C.3.1Finding points on elliptic curves
	C.3.1.1Finding points on 𝑬(�𝑭�𝒑�).
	C.3.1.2Finding points on 𝑬��𝑭��𝒒�𝒎��� (𝒎≥𝟐)

	C.3.2Finding 𝒍-order points on elliptic curves
	C.3.3Finding 𝒍-torsion points on twisted ellipti

	Bibliography

